Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(2): 1225-1242, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38228402

ABSTRACT

Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a critical role in innate inflammatory processes. Here, we describe the discovery of two clinical candidate IRAK4 inhibitors, BAY1834845 (zabedosertib) and BAY1830839, starting from a high-throughput screening hit derived from Bayer's compound library. By exploiting binding site features distinct to IRAK4 using an in-house docking model, liabilities of the original hit could surprisingly be overcome to confer both candidates with a unique combination of good potency and selectivity. Favorable DMPK profiles and activity in animal inflammation models led to the selection of these two compounds for clinical development in patients.


Subject(s)
High-Throughput Screening Assays , Indazoles , Interleukin-1 Receptor-Associated Kinases , Pyridines , Animals , Humans , Binding Sites , Inflammation
2.
J Med Chem ; 64(15): 11651-11674, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34264057

ABSTRACT

Selective inhibition of exclusively transcription-regulating positive transcription elongation factor b/CDK9 is a promising new approach in cancer therapy. Starting from atuveciclib, the first selective CDK9 inhibitor to enter clinical development, lead optimization efforts aimed at identifying intravenously (iv) applicable CDK9 inhibitors with an improved therapeutic index led to the discovery of the highly potent and selective clinical candidate VIP152. The evaluation of various scaffold hops was instrumental in the identification of VIP152, which is characterized by the underexplored benzyl sulfoximine group. VIP152 exhibited the best preclinical overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats upon once weekly iv administration. VIP152 has entered clinical trials for the treatment of cancer with promising longterm, durable monotherapy activity in double-hit diffuse large B-cell lymphoma patients.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Discovery , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 9/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Injections, Intravenous , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Rats , Structure-Activity Relationship
3.
ChemMedChem ; 12(21): 1776-1793, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28961375

ABSTRACT

Selective inhibition of exclusively transcription-regulating PTEFb/CDK9 is a promising new approach in cancer therapy. Starting from lead compound BAY-958, lead optimization efforts strictly focusing on kinase selectivity, physicochemical and DMPK properties finally led to the identification of the orally available clinical candidate atuveciclib (BAY 1143572). Structurally characterized by an unusual benzyl sulfoximine group, BAY 1143572 exhibited the best overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats. BAY 1143572 is the first potent and highly selective PTEFb/CDK9 inhibitor to enter clinical trials for the treatment of cancer.


Subject(s)
Cyclin-Dependent Kinase 9/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Sulfonamides/therapeutic use , Triazines/therapeutic use , Animals , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Cyclin-Dependent Kinase 9/metabolism , Half-Life , HeLa Cells , Humans , Leukemia, Myeloid, Acute/drug therapy , Mice , Mice, Nude , Molecular Conformation , Molecular Docking Simulation , Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/toxicity , Protein Structure, Tertiary , Rats , Rats, Nude , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/toxicity , Transplantation, Heterologous , Triazines/chemistry , Triazines/toxicity
4.
Eur J Pharm Biopharm ; 75(1): 63-70, 2010 May.
Article in English | MEDLINE | ID: mdl-20079833

ABSTRACT

The objective of this study was to improve the film formation and permeability characteristics of extended release ethylcellulose coatings prepared by dry polymer powder coating for the release of drugs of varying solubility. Ethylcellulose (7 and 10 cp viscosity grades) and Eudragit(R) RS were used for dry powder coating of pellets in a fluidised bed ball coater. Pre-plasticised ethylcellulose powder was prepared by spray-drying aqueous ethylcellulose dispersions (Surelease(R) and Aquacoat(R)) or by hot melt extrusion/cryogenic grinding of plasticised ethylcellulose. Chlorpheniramine maleate and theophylline were used as model drugs of different solubilities. The film formation process, polymeric films and coated pellets were characterised by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM) and dissolution testing. Film formation and extended drug release was achieved with ethylcellulose, a polymer with a high glass transition temperature (T(g)) without the use of water, which is usually required in dry powder coating. DMA-measurements revealed that plasticised ethylcellulose had a modulus of elasticity (E') similar to the low T(g) Eudragit(R) RS. With increasing plasticiser concentration, the T(g) of ethylcellulose was reduced and the mechanical properties improved, thus facilitating coalescence of the polymer particles. SEM-pictures revealed the formation of a dense, homogeneous film. The lower viscosity grade ethylcellulose (7 cp) resulted in better film formation than the higher viscosity grade (10 cp) and required less stringent curing conditions. Successful extended release ethylcellulose coatings were also obtained by coating with pre-plasticised spray-dried ethylcellulose powders as an alternative to the separate application of pure ethylcellulose powder and plasticiser. The permeability of the extended release coating could be controlled by using powder blends of ethylcellulose with the hydrophilic polymer HPMC. In conclusion, dry polymer powder coating is an interesting technique to achieve extended release of drugs with varying solubility as an alternative to classical coatings obtained from organic polymer solution or aqueous polymer dispersions.


Subject(s)
Chemistry, Pharmaceutical/methods , Pharmaceutical Preparations/chemistry , Polymers/chemistry , Delayed-Action Preparations , Drug Implants , Polymers/pharmacokinetics , Powders
SELECTION OF CITATIONS
SEARCH DETAIL
...