Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 30(23): 127510, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32898693

ABSTRACT

Here, we report the discovery of a new class of NPBWR1 antagonists identified from a fragment-based screen. Compound 1 (cAMP IC50 = 250 µM; LE = 0.29) emerged as an initial hit. Further optimization of 1 by SAR-by-catalogue and chemical modification produced 21a (cAMP IC50 = 30 nM; LE = 0.39) with a 6700-fold increase in potency from fragment 1. Somewhat surprisingly, Schild analysis of compound 21a suggested that in vitro inhibition of NPW-mediated effects on upon cAMP accumulation were saturable, and that compound 21a dose-dependently increased [125I]-hNPW23 dissociation rate constants from NPBWR1 in kinetic binding studies. Collectively, these data are inconsistent with a classic surmountable, orthosteric mechanism of inhibition. The benzimidazole inhibitors reported herein may therefore represent a mechanistically differentiated class of compounds with which to form a better appreciation of the pharmacology and physiological roles of this central neuropeptide system.


Subject(s)
Benzimidazoles/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Neuropeptide/antagonists & inhibitors , Animals , Benzimidazoles/chemical synthesis , CHO Cells , Cricetulus , Drug Discovery , Humans , Molecular Structure , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 27(5): 1124-1128, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28185720

ABSTRACT

The paper describes the SAR/SPR studies that led to the discovery of phenoxy cyclopropyl phenyl acetamide derivatives as potent and selective GPR119 agonists. Based on a cis cyclopropane scaffold discovered previously, phenyl acetamides such as compound 17 were found to have excellent GPR119 potency and improved physicochemical properties. Pharmacokinetic data of compound 17 in rat, dog and rhesus will be described. Compound 17 was suitable for QD dosing based on its predicted human half-life, and its projected human dose was much lower than that of the recently reported structurally-related benzyloxy compound 2. Compound 17 was selected as a tool compound candidate for NHP (Non-Human Primate) efficacy studies.


Subject(s)
Acetamides/pharmacology , Receptors, G-Protein-Coupled/agonists , Acetamides/pharmacokinetics , Animals , Half-Life , Humans , Quantum Dots , Rats , Structure-Activity Relationship
3.
ACS Med Chem Lett ; 6(8): 936-41, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26288697

ABSTRACT

We report herein the design and synthesis of a series of potent and selective GPR119 agonists. Our objective was to develop a GPR119 agonist with properties that were suitable for fixed-dose combination with a DPP4 inhibitor. Starting from a phenoxy analogue (1), medicinal chemistry efforts directed toward reducing half-life and increasing solubility led to the synthesis of a series of benzyloxy analogues. Compound 28 was chosen for further profiling because of its favorable physicochemical properties and excellent GPR119 potency across species. This compound exhibited a clean off-target profile in counterscreens and good in vivo efficacy in mouse oGTT.

4.
ACS Med Chem Lett ; 6(5): 553-7, 2015 May 14.
Article in English | MEDLINE | ID: mdl-26005532

ABSTRACT

Modification of the previously disclosed (S)-N-(2-(aminomethyl)-5-chlorobenzyl)-1-((R)-2-hydroxy-3,3-dimethylbutanoyl)pyrrolidine-2-carboxamide 2 by optimization of the P3 group afforded novel, low molecular weight thrombin inhibitors. Heterocycle replacement of the hydroxyl functional group helped maintain thrombin in vitro potency while improving the chemical stability and pharmacokinetic profile. These modifications led to the identification of compound 10, which showed excellent selectivity over related serine proteases as well as in vivo efficacy in the rat arteriovenous shunt. Compound 10 exhibited significantly improved chemical stability and pharmacokinetic properties over 2 and may be utilized as a structurally differentiated preclinical tool comparator to dabigatran etexilate (Pro-1) to interrogate the on- and off-target effects of oral direct thrombin inhibitors.

5.
Int J Pharm ; 475(1-2): 536-46, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25219860

ABSTRACT

The combination of a highly soluble salt form of a drug with a polymeric precipitation inhibitor has the potential to prolong drug supersaturation even following salt disproportionation. In this study, dissolution profiles of ibuprofen sodium in the presence of various cellulosic polymers, including hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), and hydroxypropyl cellulose (HPC), were examined in order to assess degree and duration of supersaturation. In addition, the roles that the polymers played in altering drug solubility, media viscosity, physical form, and particle morphology were also assessed. A deep dive into the mechanisms of supersaturation revealed that intermolecular hydrogen bonding between ibuprofen and HPMC was driving supersaturation through nucleation inhibition and crystal growth modification. Polymer viscosity was proposed as the primary factor prolonging supersaturation of ibuprofen in the presence of MC, while mechanisms other than hydrogen bonding were likely to be attributed to supersaturation with the most hydrophobic polymer evaluated, HPC. Overall, the study suggested that induction of intermolecular interactions between ibuprofen and HPMC were more effective at inhibiting nucleation and maintaining prolonged supersaturation than physical modulation of solution properties, such as viscosity.


Subject(s)
Cellulose/analogs & derivatives , Chemistry, Pharmaceutical/methods , Hypromellose Derivatives/chemistry , Ibuprofen/chemistry , Methylcellulose/chemistry , Cellulose/chemistry , Chromatography, High Pressure Liquid , Crystallization , Drug Liberation , Hydrogen-Ion Concentration , Microscopy, Polarization , Solubility , Spectroscopy, Fourier Transform Infrared , Viscosity , X-Ray Diffraction
6.
ACS Med Chem Lett ; 5(6): 717-21, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24944750

ABSTRACT

We report herein the identification of MK-4409, a potent and selective fatty acid amide hydrolase (FAAH) inhibitor. Starting from a high throughput screening (HTS) hit, medicinal chemistry efforts focused on optimizing of FAAH inhibition in vitro potency, improving the pharmacokinetic (PK) profile, and increasing in vivo efficacy in rodent inflammatory and neuropathic pain assays.

7.
AAPS PharmSciTech ; 15(5): 1334-44, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24920524

ABSTRACT

To maximize the pharmacological effect of a pain reliever such as ibuprofen, early onset of action is critical. Unfortunately, the acidic nature of ibuprofen minimizes the amount of drug that can be solubilized under gastric conditions and would be available for immediate absorption upon entry into the intestine. Although the sodium salt of ibuprofen has higher solubility, rapid conversion from the salt to the poorly soluble free acid phase occurs under gastric conditions. Therefore, the combination of the highly soluble sodium salt form of ibuprofen with polymers was evaluated as an approach to prolong supersaturation of ibuprofen during the disproportionation of the salt. Binary combinations of ibuprofen sodium with polymers resulted in the identification of several formulations that demonstrated high degrees and extended durations of supersaturation during in vitro dissolution experiments. These formulations included HPMC, polyvinyl pyrrolidone-vinyl acetate copolymer (PVP-VA64), methylcellulose (MC), and hydroxypropyl cellulose (HPC). The in vitro supersaturation observed with these ibuprofen-polymer formulations translated to an increase in Cmax and an earlier Tmax for the PVP-VA64, MC, and HPC formulations relative to ibuprofen only controls when administered orally to rats under fasted conditions. Based on these observations, combining ibuprofen sodium with polymers such as PVP-VA64, MC, or HPC is a viable formulation approach to prolong supersaturation in the stomach and enable an optimized pharmacokinetic profile in vivo where rapid onset of action is desired.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Ibuprofen/pharmacokinetics , Sodium/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chemistry, Pharmaceutical , Excipients , Ibuprofen/administration & dosage , Ibuprofen/chemistry , Male , Polymers , Rats , Rats, Wistar , Solubility
8.
ACS Med Chem Lett ; 4(6): 509-13, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-24900701

ABSTRACT

We report herein the discovery of a fatty acid amide hydrolase (FAAH) positron emission tomography (PET) tracer. Starting from a pyrazole lead, medicinal chemistry efforts directed toward reducing lipophilicity led to the synthesis of a series of imidazole analogues. Compound 6 was chosen for further profiling due to its appropriate physical chemical properties and excellent FAAH inhibition potency across species. [(11)C]-6 (MK-3168) exhibited good brain uptake and FAAH-specific signal in rhesus monkeys and is a suitable PET tracer for imaging FAAH in the brain.

9.
Bioorg Med Chem Lett ; 22(2): 1014-8, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22197390

ABSTRACT

The synthesis and evaluation of small molecule antagonists of the G protein-coupled receptor NPBWR1 (GPR7) are reported for the first time. [4-(5-Chloropyridin-2-yl)piperazin-1-yl][(1S,2S,4R)-4-{[(1R)-1-(4-methoxyphenyl)ethyl]amino}-2-(thiophen-3-yl)cyclohexyl]methanone (1) emerged as a hit from a high-throughput screen. Examination of substituents that focused on replacing the 5-chloropyridine and 4-methoxybenzylamino groups of 1 led to the identification of compounds that exhibited subnanomolar potencies as low as 660pM (9k) in the functional assay and 200pM in the binding assay (9i).


Subject(s)
Benzylamines/pharmacology , Piperazines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Neuropeptide/antagonists & inhibitors , Animals , Benzylamines/chemical synthesis , Benzylamines/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Molecular Structure , Piperazine , Piperazines/chemical synthesis , Piperazines/chemistry , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...