Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Toxicol In Vitro ; 98: 105846, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754599

ABSTRACT

Progressive incidence and a pessimistic survival rate of breast cancer in women worldwide remains one of the most concerning topics. Progressing research indicates a potentially high effectiveness of use cold atmospheric plasma (CAP) systems. The undoubted advantage seems its simplicity in combination with other anti-cancer modalities. Following observed trend of studies, one inventory CAP system was applied to directly treat human breast cancer cell lines and culturing in two different Plasma Activated Media (PAM) for combined utilization. Proposed CAP treatments on MCF-10 A, MCF-7, and MDA-MB-231 cell lines were studied in terms of impact on cell viability by MTT assay. Disturbances in cell motility following direct and combined CAP application were assessed by scratch test. Finally, the induction of apoptosis and necrosis was verified with annexin V and propidium iodide staining. Reactive species generated during CAP treatment were determined based on optical emission spectrometry analysis along with colorimetric methods to qualitatively assess the NO2-, NO3-, H2O2, and total ROS with free radicals concentration. The most effective approach for CAP utilization was combined treatment, leading to significant disruption in cell viability, motility and mostly apoptosis induction in breast cancer cell lines. Determined CAP dose allows for mild outcome, showing insignificant harm for the non-cancerous MCF-10 A cell line, while the highly aggressive MDA-MB-231 cell line shows the highest sensitivity on proposed CAP treatment. Direct CAP treatment seems to drive the cells into the sensitive state in which the effectiveness of PAM is boosted. Observed anti-cancer response of CAP treatment was mostly triggered by RNS (mostly NO2- ions) and ROS along with free radicals (such as H2O2, OH•, O2-•, 1O2, HO2•). The combined application of one CAP source represent a promising alternative in the development of new and effective modalities for breast cancer treatment.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Movement , Cell Survival , Plasma Gases , Reactive Oxygen Species , Humans , Plasma Gases/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Survival/drug effects , Cell Movement/drug effects , Apoptosis/drug effects , Female , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology
2.
ACS Biomater Sci Eng ; 9(12): 6632-6643, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37982239

ABSTRACT

Atmospheric pressure plasma treatments are nowadays gaining importance to improve the performance of biomaterials in the orthopedic field. Among those, magnesium phosphate-based cements (MPCs) have recently shown attractive features as bone repair materials. The effect of plasma treatments on such cements, which has not been investigated so far, could represent an innovative strategy to modify MPCs' physicochemical properties and to tune their interaction with cells. MPCs were prepared and treated for 5, 7.5, and 10 min with a cold atmospheric pressure plasma jet. The reactive nitrogen and oxygen species formed during the treatment were characterized. The surfaces of MPCs were studied in terms of the phase composition, morphology, and topography. After a preliminary test in simulated body fluid, the proliferation, adhesion, and osteogenic differentiation of human mesenchymal cells on MPCs were assessed. Plasma treatments induce modifications in the relative amounts of struvite, newberyite, and farringtonite on the surfaces on MPCs in a time-dependent fashion. Nonetheless, all investigated scaffolds show a good biocompatibility and cell adhesion, also supporting osteogenic differentiation of mesenchymal cells.


Subject(s)
Osteogenesis , Phosphates , Humans , Materials Testing , Phosphates/pharmacology , Phosphates/chemistry , Atmospheric Pressure
3.
Environ Res ; 231(Pt 3): 116297, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37268206

ABSTRACT

The common utilization of antimicrobial agents in medicine and veterinary creates serious problems with multidrug resistance spreading among pathogens. Bearing this in mind, wastewaters have to be completely purified from antimicrobial agents. In this context, a dielectric barrier discharge cold atmospheric pressure plasma (DBD-CAPP) system was used in the present study as a multifunctional tool for the deactivation of nitro-based pharmacuticals such as furazolidone (FRz) and chloramphenicol (ChRP) in solutions. A direct approach was applied to this by treating solutions of the studied drugs by DBD-CAPP in the presence of the ReO4- ions. It was found that Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), generated in the DBD-CAPP-treated liquid, played a dual role in the process. On the one hand, ROS and RNS led to the direct degradation of FRz and ChRP, and on the other hand, they enabled the production of Re nanoparticles (ReNPs). The produced in this manner ReNPs consisted of catalytically active Re+4, Re+6, and Re+7 species which allowed the reduction of -NO2 groups contained in the FRz and ChRP. Unlike the DBD-CAPP, the catalytically enhanced DBD-CAPP led to almost FRz and ChRP removals from studied solutions. The catalytic boost was particularly highlighted when catalyst/DBD-CAPP was operated in the synthetic waste matrix. Re-active sites in this scenario led to the facilitated deactivation of antibiotics, achieving significantly higher FRz and ChRP removals than DBD-CAPP on its own.


Subject(s)
Anti-Infective Agents , Plasma Gases , Rhenium , Anti-Bacterial Agents/pharmacology , Reactive Oxygen Species , Plasma Gases/chemistry , Chloramphenicol , Furazolidone , Atmospheric Pressure
4.
Sci Rep ; 12(1): 7354, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513687

ABSTRACT

Doxycycline (DOX), an antibiotic commonly used in medicine and veterinary, is frequently detected in natural waterways. Exposition of bacteria to DOX residuals poses a selective pressure leading to a common occurrence of DOX-resistance genetic determinants among microorganisms, including virulent human pathogens. In view of diminishment of the available therapeutic options, we developed a continuous-flow reaction-discharge system generating pulse-modulated radio-frequency atmospheric pressure glow discharge (pm-rf-APGD) intended for DOX removal from liquid solutions. A Design of Experiment and a Response Surface Methodology were implemented in the optimisation procedure. The removal efficiency of DOX equalling 79 ± 4.5% and the resultant degradation products were identified by High-Performance Liquid Chromatography-Diode Array Detection, Liquid Chromatography Quadruple Time of Flight Mass Spectrometry, Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry, total organic carbon, total nitrogen, Attenuated Total Reflectance Furrier Transform-Infrared, and UV/Vis-based methods. The pm-rf-APGD-treated DOX solution due to the generated Reactive Oxygen and Nitrogen Species either lost its antimicrobial properties towards Escherichia coli ATCC25922 or significantly decreased biocidal activities by 37% and 29% in relation to Staphylococcus haemolyticus ATCC29970 and Staphylococcus aureus ATCC25904, respectively. Future implementation of this efficient and eco-friendly antibiotic-degradation technology into wastewater purification systems is predicted.


Subject(s)
Body Fluids , Doxycycline , Anti-Bacterial Agents/pharmacology , Atmospheric Pressure , Doxycycline/pharmacology , Escherichia coli , Humans , Nitrogen
5.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34502164

ABSTRACT

Plant pathogenic bacteria cause significant economic losses in the global food production sector. To secure an adequate amount of high-quality nutrition for the growing human population, novel approaches need to be undertaken to combat plant disease-causing agents. As the currently available methods to eliminate bacterial phytopathogens are scarce, we evaluated the effectiveness and mechanism of action of a non-thermal atmospheric pressure plasma (NTAPP). It was ignited from a dielectric barrier discharge (DBD) operation in a plasma pencil, and applied for the first time for eradication of Dickeya and Pectobacterium spp., inoculated either on glass spheres or mung bean seeds. Furthermore, the impact of the DBD exposure on mung bean seeds germination and seedlings growth was estimated. The observed bacterial inactivation rates exceeded 3.07 logs. The two-minute DBD exposure stimulated by 3-4% the germination rate of mung bean seeds and by 13.4% subsequent early growth of the seedlings. On the contrary, a detrimental action of the four-minute DBD subjection on seed germination and early growth of the sprouts was noted shortly after the treatment. However, this effect was no longer observed or reduced to 9.7% after the 96 h incubation period. Due to the application of optical emission spectrometry (OES), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM), we found that the generated reactive oxygen and nitrogen species (RONS), i.e., N2, N2+, NO, OH, NH, and O, probably led to the denaturation and aggregation of DNA, proteins, and ribosomes. Furthermore, the cellular membrane disrupted, leading to an outflow of the cytoplasm from the DBD-exposed cells. This study suggests the potential applicability of NTAPPs as eco-friendly and innovative plant protection methods.


Subject(s)
Plant Diseases/prevention & control , Plasma Gases/pharmacology , Seeds/drug effects , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/ultrastructure , Germination/drug effects , Humans , Plant Diseases/microbiology , Plasma Gases/administration & dosage , Seedlings/drug effects , Seeds/microbiology , Vigna/drug effects , Vigna/microbiology
6.
Int J Mol Sci ; 22(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062832

ABSTRACT

To the present day, no efficient plant protection method against economically important bacterial phytopathogens from the Pectobacteriaceae family has been implemented into agricultural practice. In this view, we have performed a multivariate optimization of the operating parameters of the reaction-discharge system, employing direct current atmospheric pressure glow discharge, generated in contact with a flowing liquid cathode (FLC-dc-APGD), for the production of a plasma-activated liquid (PAL) of defined physicochemical and anti-phytopathogenic properties. As a result, the effect of the operating parameters on the conductivity of PAL acquired under these conditions was assessed. The revealed optimal operating conditions, under which the PAL of the highest conductivity was obtained, were as follows: flow rate of the solution equaled 2.0 mL min-1, the discharge current was 30 mA, and the inorganic salt concentration (ammonium nitrate, NH4NO3) in the solution turned out to be 0.50% (m/w). The developed PAL exhibited bacteriostatic and bactericidal properties toward Dickeya solani IFB0099 and Pectobacterium atrosepticum IFB5103 strains, with minimal inhibitory and minimal bactericidal concentrations equaling 25%. After 24 h exposure to 25% PAL, 100% (1-2 × 106) of D. solani and P. atrosepticum cells lost viability. We attributed the antibacterial properties of PAL to the presence of deeply penetrating, reactive oxygen and nitrogen species (RONS), which were, in this case, OH, O, O3, H2O2, HO2, NH, N2, N2+, NO2-, NO3-, and NH4+. Putatively, the generated low-cost, eco-friendly, easy-to-store, and transport PAL, exhibiting the required antibacterial and physicochemical properties, may find numerous applications in the plant protection sector.


Subject(s)
Anti-Bacterial Agents/pharmacology , Flowers/growth & development , Pectobacterium/metabolism , Reactive Nitrogen Species/metabolism , Agriculture , Anti-Bacterial Agents/chemistry , Atmospheric Pressure , Body Fluids/chemistry , Flowers/radiation effects , Hydrogen Peroxide/metabolism , Nitrates/pharmacology , Pectobacterium/growth & development , Pectobacterium/radiation effects , Plasma Gases/pharmacology , Reactive Oxygen Species/chemistry
7.
Int J Mol Sci ; 22(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917790

ABSTRACT

Breast cancer remains the most common type of cancer, occurring in middle-aged women, and often leads to patients' death. In this work, we applied a cold atmospheric pressure plasma (CAPP)-based reaction-discharge system, one that is unique in its class, for the production of CAPP-activated media (DMEM and Opti-MEM); it is intended for further uses in breast cancer treatment. To reach this aim, different volumes of DMEM or Opti-MEM were treated by CAPP. Prepared media were exposed to the CAPP treatment at seven different time intervals and examined in respect of their impact on cell viability and motility, and the induction of the apoptosis in human non-metastatic (MCF7) and metastatic (MDA-MB-231) breast cancer cell lines. As a control, the influence of CAPP-activated media on the viability and motility, and the type of the cell death of the non-cancerous human normal MCF10A cell line, was estimated. Additionally, qualitative and quantitative analyses of the reactive oxygen and nitrogen species (RONS), generated during the CAPP operation in contact with analyzed media, were performed. Based on the conducted research, it was found that 180 s (media activation time by CAPP) should be considered as the minimal toxic dose, which significantly decreases the cell viability and the migration of MDA-MB-231 cells, and also disturbs life processes of MCF7 cells. Finally, CAPP-activated media led to the apoptosis of analyzed cell lines, especially of the metastatic MDA-MB-231 cell line. Therefore, the application of the CAPP system may be potentially applied as a therapeutic strategy for the management of highly metastatic human breast cancer.


Subject(s)
Apoptosis/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Culture Media/pharmacology , Plasma Gases/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Culture Media/chemistry , Female , Humans , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism
8.
RSC Adv ; 11(61): 38596-38604, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-35493235

ABSTRACT

Here we have presented a new method for the synthesis of Re nanostructures with defined optical, structural, and catalytic properties. The Re-based nanoparticles (NPs) were obtained using a reaction-discharge system that is unique in its class, because of its working in the high-throughput mode. Within this application, direct current atmospheric pressure glow discharge (dc-APGD) was used as a non-thermal atmospheric pressure plasma (NTAP) source, which led to the reduction of Re(vii) ions and the formation of Re nanostructures through the plasma-liquid interactions. The Re-based NPs were synthesized in a flow-mode reaction-discharge system, where their precursor solution was a flowing liquid anode (FLA) or a flowing liquid cathode (FLC). The resultant NPs were analyzed using UV/Vis absorption spectrophotometry and transmission electron microscopy (TEM), which were supported by selected area X-ray diffraction (SAED) and the energy dispersive X-ray spectroscopy (EDX). Additionally, the mechanism for the reduction of Re(vii) ions was explained by the differences in the concentrations of the selected reactive nitrogen species (RNS) and reactive oxygen species (ROS) produced by dc-APGD. It was found that the application of dc-APGD, operating in a FLA configuration (FLA-dc-APGD), resulted in the formation of ReNPs with Re0, while the use of dc-APGD operating in a FLC configuration (FLC-dc-APGD) led to the formation of Re oxide NPs. In the latter case, a much greater oxidizing environment was likely provided, therefore the RNS and ROS contributed to the formation of Re oxide nanostructures. The ReNPs with Re0 were characterized by a size of 6.02 ± 3.01 nm, and the Re oxide NPs were characterized by a size of 4.97 ± 3.82 nm. Both types of nanostructures were then employed in the catalytic hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Based on the results, both of the nanocatalysts effectively reduced 4-NP with an apparent rate constant (k app) of 2.6 × 10-3 s-1. At the same time, the catalytic activity was linked with the average size distribution of the Re nanostructures, as opposed to their morphology.

9.
Nanomaterials (Basel) ; 8(10)2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30248904

ABSTRACT

Development of efficient plant protection methods against bacterial phytopathogens subjected to compulsory control procedures under international legislation is of the highest concern having in mind expensiveness of enforced quarantine measures and threat of the infection spread in disease-free regions. In this study, fructose-stabilized silver nanoparticles (FRU-AgNPs) were produced using direct current atmospheric pressure glow discharge (dc-APGD) generated between the surface of a flowing liquid anode (FLA) solution and a pin-type tungsten cathode in a continuous flow reaction-discharge system. Resultant spherical and stable in time FRU-AgNPs exhibited average sizes of 14.9 ± 7.9 nm and 15.7 ± 2.0 nm, as assessed by transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. Energy dispersive X-ray spectroscopy (EDX) analysis revealed that the obtained nanomaterial was composed of Ag while selected area electron diffraction (SAED) indicated that FRU-AgNPs had the face-centered cubic crystalline structure. The fabricated FRU-AgNPs show antibacterial properties against Erwinia amylovora, Clavibacter michiganensis, Ralstonia solanacearum, Xanthomonas campestris pv. campestris and Dickeya solani strains with minimal inhibitory concentrations (MICs) of 1.64 to 13.1 mg L-1 and minimal bactericidal concentrations (MBCs) from 3.29 to 26.3 mg L-1. Application of FRU-AgNPs might increase the repertoire of available control procedures against most devastating phytopathogens and as a result successfully limit their agricultural impact.

10.
Nanomaterials (Basel) ; 8(8)2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30111716

ABSTRACT

Poly(vinylpyrrolidone)-stabilized Pt nanoparticles (PVP-PtNPs) were produced in a continuous-flow reaction-discharge system by application of direct current atmospheric pressure glow discharge (dc-APGD) operated between the surface of a flowing liquid anode (FLA) and a pin-type tungsten cathode. Synthesized PVP-PtNPs exhibited absorption across the entire UV/Vis region. The morphology and elemental composition of PVP-PtNPs were determined with transmission electron microscopy (TEM) and energy dispersive X-ray scattering (EDX), respectively. As assessed by TEM, PVP-PtNPs were approximately spherical in shape, with an average size of 2.9 ± 0.6 nm. EDX proved the presence of Pt, C, and O. Dynamic light scattering (DLS) and attenuated total reflectance Fourier transform-infrared spectroscopy (ATR FT-IR) confirmed PtNPs functionalization with PVP. As determined by DLS, the average size of PtNPs stabilized by PVP was 111.4 ± 22.6 nm. A fluid containing resultant PVP-PtNPs was used as a heat conductive layer for a spiral radiator managing heat generated by a simulated internal combustion chamber. As compared to water, the use of PVP-PtNPs enhanced efficiency of the system, increasing the rate of heat transfer by 80% and 30% during heating and cooling, respectively.

11.
Materials (Basel) ; 11(3)2018 Feb 25.
Article in English | MEDLINE | ID: mdl-29495328

ABSTRACT

Pectinolytic bacteria are responsible for significant economic losses by causing diseases on numerous plants. New methods are required to control and limit their spread. One possibility is the application of silver nanoparticles (AgNPs) that exhibit well-established antibacterial properties. Here, we synthesized AgNPs, stabilized by pectins (PEC) or sodium dodecyl sulphate (SDS), using a direct current atmospheric pressure glow discharge (dc-APGD) generated in an open-to-air and continuous-flow reaction-discharge system. Characterization of the PEC-AgNPs and SDS-AgNPs with UV/Vis absorption spectroscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction revealed the production of spherical, well dispersed, and face cubic centered crystalline AgNPs, with average sizes of 9.33 ± 3.37 nm and 28.3 ± 11.7 nm, respectively. Attenuated total reflection-Fourier transformation infrared spectroscopy supported the functionalization of the nanostructures by PEC and SDS. Antibacterial activity of the AgNPs was tested against Dickeya spp. and Pectobacterium spp. strains. Both PEC-AgNPs and SDS-AgNPs displayed bactericidal activity against all of the tested isolates, with minimum inhibitory concentrations of 5.5 mg∙L-1 and 0.75-3 mg∙L-1, respectively. The collected results suggest that the dc-APGD reaction-discharge system can be applied for the production of defined AgNPs with strong antibacterial properties, which may be further applied in plant disease management.

SELECTION OF CITATIONS
SEARCH DETAIL
...