Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 186(1): 655-676, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33576792

ABSTRACT

Addressing the looming global food security crisis requires the development of high-yielding crops. In agricultural soils, deficiency in the micronutrient copper significantly decreases grain yield in wheat (Triticum aestivum), a globally important crop. In cereals, grain yield is determined by inflorescence architecture, flower fertility, grain size, and weight. Whether copper is involved in these processes, and how it is delivered to the reproductive organs is not well understood. We show that copper deficiency alters not only the grain set but also flower development in both wheat and its recognized model, Brachypodium distachyon. We then show that the Brachypodium yellow stripe-like 3 (YSL3) transporter localizes to the phloem, transports copper in frog (Xenopus laevis) oocytes, and facilitates copper delivery to reproductive organs and grains. Failure to deliver copper, but not iron, zinc, or manganese to these structures in the ysl3 CRISPR-Cas9 mutant results in delayed flowering, altered inflorescence architecture, reduced floret fertility, grain size, weight, and protein accumulation. These defects are rescued by copper supplementation and are complemented by YSL3 cDNA. This knowledge will help to devise sustainable approaches for improving grain yield in regions where soil quality is a major obstacle for crop production. Copper distribution by a phloem-localized transporter is essential for the transition to flowering, inflorescence architecture, floret fertility, size, weight, and protein accumulation in seeds.


Subject(s)
Brachypodium/physiology , Copper/metabolism , Membrane Transport Proteins/genetics , Plant Proteins/genetics , Seeds/growth & development , Brachypodium/genetics , Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...