Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893635

ABSTRACT

Frataxin plays a key role in cellular iron homeostasis of different organisms. It has been implicated in iron storage, detoxification, delivery for Fe-S cluster assembly and heme biosynthesis. However, its specific role in iron metabolism remains unclear, especially in photosynthetic organisms. To gain insight into the role and properties of frataxin in algae, we identified the gene CreFH1, which codes for the frataxin homolog from Chlamydomonas reinhardtii. We performed the cloning, expression and biochemical characterization of CreFH1. This protein has a predicted mitochondrial transit peptide and a significant structural similarity to other members of the frataxin family. In addition, CreFH1 was able to form a dimer in vitro, and this effect was increased by the addition of Cu2+ and also attenuated the Fenton reaction in the presence of a mixture of Fe2+ and H2O2. Bacterial cells with overexpression of CreFH1 showed increased growth in the presence of different metals, such as Fe, Cu, Zn and Ni and H2O2. Thus, results indicated that CreFH1 is a functional protein that shows some distinctive features compared to its more well-known counterparts, and would play an important role in response to oxidative stress in C. reinhardtii.

2.
Plants (Basel) ; 10(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494487

ABSTRACT

Iron and sulfur are two essential elements for all organisms. These elements form the Fe-S clusters that are present as cofactors in numerous proteins and protein complexes related to key processes in cells, such as respiration and photosynthesis, and participate in numerous enzymatic reactions. In photosynthetic organisms, the ISC and SUF Fe-S cluster synthesis pathways are located in organelles, mitochondria, and chloroplasts, respectively. There is also a third biosynthetic machinery in the cytosol (CIA) that is dependent on the mitochondria for its function. The genes and proteins that participate in these assembly pathways have been described mainly in bacteria, yeasts, humans, and recently in higher plants. However, little is known about the proteins that participate in these processes in algae. This review work is mainly focused on releasing the information on the existence of genes and proteins of green algae (chlorophytes) that could participate in the assembly process of Fe-S groups, especially in the mitochondrial ISC and CIA pathways.

3.
Plants (Basel) ; 9(9)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32917022

ABSTRACT

In plants, the cysteine desulfurase (AtNFS1) and frataxin (AtFH) are involved in the formation of Fe-S groups in mitochondria, specifically, in Fe and sulfur loading onto scaffold proteins, and the subsequent formation of the mature Fe-S cluster. We found that the small mitochondrial chaperone, AtISD11, and AtFH are positive regulators for AtNFS1 activity in Arabidopsis. Moreover, when the three proteins were incubated together, a stronger attenuation of the Fenton reaction was observed compared to that observed with AtFH alone. Using pull-down assays, we found that these three proteins physically interact, and sequence alignment and docking studies showed that several amino acid residues reported as critical for the interaction of their human homologous are conserved. Our results suggest that AtFH, AtNFS1 and AtISD11 form a multiprotein complex that could be involved in different stages of the iron-sulfur cluster (ISC) pathway in plant mitochondria.

4.
Biochimie ; 156: 118-122, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30342111

ABSTRACT

Frataxin plays a key role in cellular iron homeostasis of different organisms. It is engaged in several activities at the FeS cluster assembly machinery and it is also involved in heme biosynthesis. In plants, two genes encoding ferrochelatases (FC1 and FC2) catalyze the incorporation of iron into protoporphyrin IX in the last stage of heme synthesis in chloroplasts. Despite ferrochelatases are absent from other cell compartments, a remaining ferrochelatase activity has been observed in plant mitochondria. Here we analyze the possibility that frataxin acts as the iron donor to protoporphyrin IX for the synthesis of heme groups in plant mitochondria. Our findings show that frataxin catalyzes the formation of heme in vitro when it is incubated with iron and protoporphyrin IX. When frataxin is combined with AtNFS1 and AtISD11 the ferrochelatse activity is increased. These results suggest that frataxin could be the iron donor in the final step of heme synthesis in plant mitochondria, and constitutes an important advance in the elucidation of the mechanisms of heme synthesis in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Ferrochelatase/metabolism , Iron-Binding Proteins/metabolism , Mitochondria/enzymology , Arabidopsis , Arabidopsis Proteins/chemistry , Catalysis , Chloroplasts/enzymology , Ferrochelatase/chemistry , Heme/biosynthesis , Iron-Binding Proteins/chemistry , Protoporphyrins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...