Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21267519

ABSTRACT

The rapid emergence of the Omicron variant and its large number of mutations has led to its classification as a variant of concern (VOC) by the WHO(1). Initial studies on the neutralizing response towards this variant within convalescent and vaccinated individuals have identified substantial reductions(2-8). However many of these sample sets used in these studies were either small, uniform in nature, or were compared only to wild-type (WT) or, at most, a few other VOC. Here, we assessed IgG binding, (Angiotensin-Converting Enzyme 2) ACE2 binding inhibition, and antibody binding dynamics for the omicron variant compared to all other VOC and variants of interest (VOI)(9), in a large cohort of infected, vaccinated, and infected and then vaccinated individuals. While omicron was capable of binding to ACE2 efficiently, antibodies elicited by infection or immunization showed reduced IgG binding and ACE2 binding inhibition compared to WT and all VOC. Among vaccinated samples, antibody binding responses towards omicron were only improved following administration of a third dose. Overall, our results identify that omicron can still bind ACE2 while pre-existing antibodies can bind omicron. The extent of the mutations appear to inhibit the development of a neutralizing response, and as a result, omicron remains capable of evading immune control.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21252958

ABSTRACT

The SARS-CoV-2 pandemic virus is consistently evolving with mutations within the receptor binding domain (RBD)1 being of particular concern2-4. To date, there is little research into protection offered following vaccination or infection against RBD mutants in emerging variants of concern (UK3, South African5, Mink6 and Southern California7). To investigate this, serum and saliva samples were obtained from groups of vaccinated (Pfizer BNT-162b28), infected and uninfected individuals. Antibody responses among groups, including salivary antibody response and antibody binding to RBD mutant strains were examined. The neutralization capacity of the antibody response against a patient-isolated South African variant was tested by viral neutralization tests and further verified by an ACE2 competition assay. We found that humoral responses in vaccinated individuals showed a robust response after the second dose. Interestingly, IgG antibodies were detected in large titers in the saliva of vaccinated subjects. Antibody responses showed considerable differences in binding to RBD mutants in emerging variants of concern. A substantial reduction in RBD binding and neutralization was detected for the South African variant. Taken together our data reinforces the importance of administering the second dose of Pfizer BNT-162b2 to acquire high levels of neutralizing antibodies. High antibody titers in saliva suggest that vaccinated individuals may have reduced transmission potential. Substantially reduced neutralization for the South African variant highlights importance of surveillance strategies to detect new variants and targeting these in future vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL
...