Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0302040, 2024.
Article in English | MEDLINE | ID: mdl-38900830

ABSTRACT

Fire suppression has negatively impacted thousands of acres of private and public lands in the United States. As a case study, the New Jersey Pine Barrens (NJPB) are a disturbance driven ecosystem that is experiencing serious ecological implications due to a loss of traditional forest thinning activities such as harvesting for forest products or thinning for wildfire fuel-load reduction measures coupled with a long-standing philosophy of fire suppression and dormant-season prescribed burning. Dense closed-canopy forest conditions, dissimilar to historic open-canopy forests of the NJPB, have reduced abundance and diversity of certain flora and fauna, including regionally imperiled breeding birds. In recent years, active forest stewardship (e.g., thinning, clear-cutting, and burning) has occurred on private and some public lands within the NJPB; however, the impact of such management on breeding birds is unclear due to a paucity of research on this subject within the NJPB. During 2012, 2013, 2016, and 2017, we conducted repeat-visit point counts (n = 1,800) for breeding songbirds across 75 control and 75 treatment sites within the NJPB to assess the influence of forest structure at three strata levels (groundcover, midstory profile, and canopy) on breeding bird communities. Specifically, we constructed a hierarchical community abundance model within a Bayesian framework for Bird Conservation Region (BCR) 30 priority upland birds (n = 12) within three species suites: Forested Upland, Scrub-Shrub (or Young Forest), and Grassland. At the community level, we found a negative relationship between bird abundance and live tree basal area. At the BCR 30 suite level, we found no relationship between Forested Upland suite-level abundance and any of the measured covariates; however, we found a negative relationship between percentage of woody groundcover and Scrub-Shrub suite-level abundance, and negative relationship between horizontal visual obstruction at 2 m above ground level and Grassland suite-level abundance. Furthermore, the two latter species suites exhibited a strong negative relationship with basal area. We recommend active forest stewardship that specifically targets opening the canopy to achieve basal areas between ~0-15 m2/ha via selective thinning, shelter cutting, and small-scale clear cutting. Mechanical treatment and prescribed burning would produce such conditions and have the added benefit of reducing fuel loads across this ~4,500 km2 landscape as well as assisting in carbon defense strategies for the region.


Subject(s)
Conservation of Natural Resources , Ecosystem , Forests , Animals , New Jersey , Conservation of Natural Resources/methods , Birds/physiology , Forestry/methods , Biodiversity , Songbirds/physiology
2.
Ecol Evol ; 11(21): 14758-14774, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765139

ABSTRACT

Disparate resource use originating from phenology of biotic resources, abiotic conditions, and life cycles of exploiting organisms underscores the importance of research across time and space to guide management practices. Our goal was to evaluate resource use of northern bobwhite (Colinus virginianus; bobwhite) at two spatial scales and across three age classes, from hatching through a period of the postjuvenile molt. Our study was conducted at Tall Timbers Research Station, Tallahassee, FL, USA-situated in a landscape subjected to small scale (<20 ha) prescribed fires on a 2-year fire rotation. We predicted prescribed fire, disking, and supplemental feeding would dictate resource use, but effects would depend on time since fire, brood age, and time of day. We predicted vegetation and temperature would govern roost use by broods, but these effects would also depend on age. We radio-tracked 62 broods 21-35 times / week during May-October 2018 and 2019. Broods were less likely to use areas with large proportions of hardwood drains but favored sites with greater proportions of burned uplands, regardless of the time of day. Broods were less likely to use areas at greater distances from supplemental feed; this relationship had no interaction with age but was stronger later in the nesting season (>July 15). Broods were more likely to use areas with greater proportions of fallow fields during the day than for roosting. Broods used roosts with more woody cover and visual obscurity than at available sites. Roosts consisted of less grass and bare ground. However, these effects interacted with age; broods used sparser cover at older ages. Neonate broods were more likely to use cooler roosts with greater thermal stability, but this effect was reversed for juveniles. Broods may alter resource use with changes in vulnerabilities to threats such as thermal risks and predation.

3.
Oecologia ; 197(1): 143-155, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34363526

ABSTRACT

Understanding how predators affect prey species is a central endeavor in applied ecology. Game birds are a culturally and economically important group of birds throughout the world. Specifically, northern bobwhite (Colinus virginianus) is an imperiled game bird native to North America that has declined precipitously over the past 65 years. Concurrently, raptor populations increased substantially as a result of pesticide bans and legal protections. However, relationships between raptors and bobwhites are not well-understood because of limited long-term data. We analyzed long-term raptor survey and bobwhite survival datasets from 2008 to 2018 to determine if oscillations in raptor abundance affected bobwhite survival. We used a novel open multi-species dynamics hierarchical distance sampling model to estimate the abundance of raptors. We used a known-fate survival model to determine if variation in raptor abundance affected bobwhite survival. We had multiple working hypotheses regarding biological relationships between raptor abundance and bobwhite survival. Raptors affected bobwhites in every biological season but were more influential in the breeding season and late winter supporting the notion of bobwhite behavior and raptor migration were driving observed patterns. Our results suggest that even in areas with abundant habitat, predators exert top-down influences on vital rates suggesting similar or greater influences on populations under poor habitat conditions.


Subject(s)
Colinus , Raptors , Animals , Birds , Ecosystem , Predatory Behavior
4.
Conserv Physiol ; 8(1): coaa026, 2020.
Article in English | MEDLINE | ID: mdl-32308982

ABSTRACT

Examination of the endocrine system through non-invasive fecal sampling may improve population management more than using demographic indicators alone. By addressing the physiological mechanisms that are influencing fitness, management actions can be proactively developed to alleviate stressors. Proactive determination of vulnerable populations is critical for species of concern, such as the Northern Bobwhite (Colinus virginianus), which have suffered decades of population decline. We validated an assay to noninvasively measure the adrenocortical response of captive reared bobwhite through fecal corticosterone metabolites (FCM). All individuals received three sequential 48-hour treatments in which samples were collected every 4 hours, including a reference period, an adrenocorticotropic hormone (ACTH) challenge and a biological stressor (exposure to a hunting dog). Reference FCM values had a mean concentration of 16.75 pg/mg (95% CrI: 13.68, 19.91) with adrenocortical activity increasing by 73% for the duration of the ACTH challenge (29.00 pg/mg; CrI: 25.01, 33.78). FCM concentrations remained similar to that of the reference levels during the biological stressor (16.56 pg/mg; CrI: 13.33, 19.92). Our study validates the use of feces to detect changes in FCM levels in our subject species but also demonstrates the complexity of FCM and the importance of both physiological and biological validation prior to field implementation.

5.
Ecol Appl ; 20(4): 1040-52, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20597288

ABSTRACT

Habitat fragmentation, degradation, and loss have taxed early-successional species including the Northern Bobwhite (Colinus virginianus) and numerous grassland obligate birds. Translocation is often applied to counteract the consequences of habitat fragmentation through the creation, reestablishment, or augmentation of wild populations for the purposes of conservation, biodiversity maintenance. However, the implementation of these techniques is often conducted without valid experimental designs and therefore lacks robust, empirical data needed to evaluate and advance the knowledge and application of translocation. Despite the increasing amount of habitat management applied to patches among fragmented landscapes, a paucity of source populations often limits natural (re)colonization. As such, translocation may serve as a surrogate to natural dispersal, but its efficacy among fragmented landscapes is uncertain. Few studies exist that have assessed site fidelity, movement, and survival of individuals following translocation among fragmented landscapes. Thus, we experimentally evaluated the efficacy of translocation using known-fate and multi-strata models to evaluate hypotheses of temporal, biological, and group effects on survival and movement of translocated and resident bobwhites. We did not detect differences in survival or movement between translocated and resident bobwhites, suggesting that movement of individuals to a fragmented habitat does not negatively influence these demographic attributes. Based on these data, we suggest that two site-specific criteria should be met prior to instituting translocation: habitat management should be conducted to ensure that quality habitat exists and the patch size should be a minimum of 600 ha of quality habitat (poorer sites may warrant even larger patches). Translocation is a viable conservation method for increasing abundance in patches when habitat quality is high but source populations are limited.


Subject(s)
Behavior, Animal , Colinus , Ecosystem , Animals , Georgia , Locomotion
SELECTION OF CITATIONS
SEARCH DETAIL
...