Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
J Bone Miner Metab ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850283

ABSTRACT

INTRODUCTION: Systemic osteogenesis has been speculated to be involved in the pathogenesis of ossification of the posterior longitudinal ligament (OPLL). Our purpose was to compare the radiologic prevalence and severity of heterotopic ossification in foot tendons of Japanese patients with OPLL and to determine their association with systemic heterotopic ossification. MATERIALS AND METHODS: Clinical and radiographic data of 114 patients with OPLL were collected from 2020 to 2022. Control data were extracted from a medical database of 362 patients with ankle radiographs. Achilles and plantar tendon ossification were classified as grades 0-4, and the presence of osteophytes at five sites in the foot/ankle joint was assessed by radiography. Factors associated with the presence and severity of each ossification were evaluated by multivariable logistic regression and linear regression analysis. RESULTS: The prevalence of Achilles and plantar tendon ossification (grade ≥ 2) was 4.0-5.5 times higher in patients with OPLL (40-56%) than in the controls (10-11%). The presence of Achilles tendon ossification was associated with OPLL, age, and coexisting plantar tendon ossification, and was most strongly associated with OPLL (standardized regression coefficient, 0.79; 95% confidence interval, 1.34-2.38). The severity of Achilles and plantar tendon ossification was associated with the severity of ossification of the entire spinal ligament. CONCLUSIONS: The strong association of foot tendon ossification with OPLL suggests that patients with OPLL have a systemic osteogenesis background. These findings will provide a basis for exploring new treatment strategies for OPLL, including control of metabolic abnormalities.

2.
Spine J ; 23(10): 1461-1470, 2023 10.
Article in English | MEDLINE | ID: mdl-37437695

ABSTRACT

BACKGROUND CONTEXT: Recent studies suggest that ossification of the posterior longitudinal ligament (OPLL) is exacerbated by systemic metabolic disturbances, including obesity. However, although an increase in bone mineral density (BMD) measured at the lumbar spine has been reported in patients with OPLL, no studies have investigated the systemic BMD of patients with OPLL in detail. PURPOSE: We investigated whether patients with OPLL develop increased whole-body BMD. STUDY DESIGN: Single institution cross-sectional study. PATIENT SAMPLE: Data were collected from Japanese patients with symptomatic OPLL (OPLL [+]; n=99). Control data (OPLL [-]; n=226) without spinal ligament ossification were collected from patients who underwent spinal decompression, spinal fusion, or hip replacement surgery. OUTCOME MEASURES: Demographic data, including age, body mass index (BMI), comorbidities, history of treatment for osteoporosis, and history of vertebral and nonvertebral fractures, was obtained from all participants. In addition, whole-body BMD, including the lumbar spine, thoracic spine, femoral neck, skull, ribs, entire upper extremity, entire lower extremity, and pelvis, were measured in all participants using whole-body dual-energy X-ray absorptiometry. METHODS: Patient data were collected from 2018 to 2022. All participants were categorized based on sex, age (middle-aged [<70 years] and older adults [≥70 years]), and OPLL type (localized OPLL [OPLL only in the cervical spine], diffuse OPLL [OPLL in regions including the thoracic spine]), and OPLL [-]) and each parameter was compared. The factors associated with whole-body BMD were evaluated via multivariable linear regression analysis. RESULTS: Compared with the OPLL (-) group, the OPLL (+) group of older women had significantly higher BMD in all body parts (p<.01), and the OPLL (+) group of older men had significantly higher BMD in all body parts except the ribs, forearm, and skull (p<.01). The factors associated with increased BMD of both the femoral neck (load-bearing bone) and skull (nonload-bearing bone) were age, BMI, and coexisting diffuse OPLL in women and BMI and coexisting localized OPLL in men. CONCLUSIONS: Patients with OPLL have increased whole-body BMD regardless of sex, indicating that it is not simply due to load-bearing from obesity. These findings suggested that OPLL is associated with a systemic pathology.


Subject(s)
Bone Density , Ossification of Posterior Longitudinal Ligament , Male , Middle Aged , Humans , Female , Aged , Longitudinal Ligaments , Human Body , Cross-Sectional Studies , Osteogenesis , Ossification of Posterior Longitudinal Ligament/complications , Ossification of Posterior Longitudinal Ligament/diagnostic imaging , Ossification of Posterior Longitudinal Ligament/surgery , Cervical Vertebrae/surgery , Obesity/complications
3.
Spine J ; 23(9): 1287-1295, 2023 09.
Article in English | MEDLINE | ID: mdl-37160167

ABSTRACT

BACKGROUND CONTEXT: Obesity and visceral fat have been implicated as potential factors in the pathogenesis of the ossification of the posterior longitudinal ligament (OPLL); the details of the factors involved in OPLL remain unclear. PURPOSE: We aimed to determine the association between dyslipidemia and symptomatic OPLL. STUDY DESIGN: Single institution cross-sectional study. PATIENT SAMPLE: Data were collected from Japanese patients with OPLL (n=92) who underwent whole-spine computed tomography scanning. Control data (n=246) without any spinal ligament ossification were collected from 627 Japanese participants who underwent physical examination. OUTCOME MEASURES: Baseline information and lipid parameters, including triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) from fasting blood samples were collected to assess the comorbidity of dyslipidemia. METHODS: Patient data were collected from 2020 to 2022. Patients with dyslipidemia were defined as those who were taking medication for dyslipidemia and who met one of the following criteria: TG ≥150 mg/dL, LDL-C ≥140 mg/dL, and/or HDL-C <40 mg/dL. The factors associated with OPLL development were evaluated using multivariate logistic regression analysis. RESULTS: The comorbidity of dyslipidemia in the OPLL group was more than twice that in the control group (71.7% and 35.4%, respectively). The mean body mass index (BMI) of the OPLL group was significantly higher than that of the control group (27.2 kg/m2 and 23.0 kg/m2). Multivariate logistic regression analysis revealed that dyslipidemia was associated with the development of OPLL (regression coefficient, 0.80; 95% confidence interval, 0.11-1.50). Additional risk factors included age, BMI, and diabetes mellitus. CONCLUSIONS: We demonstrated a novel association between dyslipidemia and symptomatic OPLL development using serum data. This suggests that visceral fat obesity or abnormal lipid metabolism are associated with the mechanisms of onset and exacerbation of OPLL as well as focal mechanical irritation due to being overweight.


Subject(s)
Dyslipidemias , Ossification of Posterior Longitudinal Ligament , Humans , Longitudinal Ligaments/pathology , Osteogenesis , Cross-Sectional Studies , Cholesterol, LDL , Ossification of Posterior Longitudinal Ligament/diagnostic imaging , Ossification of Posterior Longitudinal Ligament/epidemiology , Dyslipidemias/epidemiology , Dyslipidemias/complications , Obesity/complications , Obesity/epidemiology , Cervical Vertebrae/pathology
4.
Arthritis Rheumatol ; 75(8): 1358-1369, 2023 08.
Article in English | MEDLINE | ID: mdl-36924130

ABSTRACT

OBJECTIVE: The severity of osteoarthritis (OA) and cartilage degeneration is highly correlated with the development of synovitis, which is mediated by the activity of inflammatory macrophages. A better understanding of intercellular communication between inflammatory macrophages and chondrocytes should aid in the discovery of novel therapeutic targets. We undertook this study to explore the pathologic role of inflammatory macrophage extracellular vesicles (EVs) in cartilage degeneration. METHODS: Macrophages were stimulated by treatment with bacterial lipopolysaccharides to mimic the state of inflammatory macrophages, and the resulting EVs were harvested for chondrocyte stimulation in vitro and for intraarticular injection in a mouse model. The stimulated chondrocytes were further subjected to RNA-sequencing analysis and other functional assays. The action of caspase 11 was disrupted in vitro using a specific small interfering RNA or wedelolactone, and in experimental murine OA models by intraarticular injection of wedelolactone. RESULTS: Stimulated chondrocytes exhibited a significant elevation in the expression of chondrocyte catabolic factors. Consistent with these results, RNA-sequencing analyses of stimulated chondrocytes indicated that up-regulated genes were mainly categorized into apoptotic process and tumor necrosis factor signaling pathways, which suggests the induction of apoptotic process. Moreover, these chondrocytes exhibited a significant elevation in the expression of pyroptosis-related molecules that were correlated with the expression of chondrocyte catabolic factors. The disruption of caspase 11 significantly alleviated pyroptotic and catabolic processes in stimulated chondrocytes and pathologic changes in collagenase-induced and joint instability-induced OA models. CONCLUSION: Our results provide new insight into the pathologic mechanisms of OA and suggest that noncanonical pyroptosis in chondrocytes represents an attractive therapeutic target for treatment.


Subject(s)
Cartilage, Articular , Extracellular Vesicles , Osteoarthritis , Mice , Animals , Chondrocytes/metabolism , Pyroptosis , Cartilage/metabolism , Osteoarthritis/metabolism , Macrophages/metabolism , RNA, Small Interfering/metabolism , Caspases , Extracellular Vesicles/pathology , Cartilage, Articular/metabolism
5.
BMC Musculoskelet Disord ; 24(1): 134, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36803129

ABSTRACT

BACKGROUND: This study compared the re-revision rate and radiographic outcomes of revision total hip arthroplasty (THA) using a Kerboull-type acetabular reinforcement device (KT plate) with bulk structural allograft and metal mesh with impaction bone grafting (IBG). METHODS: Ninety-one hips of 81 patients underwent revision THA for American Academy of Orthopedic Surgeons (AAOS) classification type III defects from 2008 to 2018. Of these, seven hips of five patients and 15 hips of 13 patients were excluded due to insufficient follow-up information (< 24 months) and large bone defects with a vertical defect height ≥ 60 mm, respectively. The current study compared the survival and radiographic parameters of 45 hips of 41 patients using a KT plate (KT group) and 24 hips of 24 patients using a metal mesh with IBG (mesh group). RESULTS: Eleven hips (24.4%) in the KT group and 1 hip (4.2%) in the mesh group exhibited radiological failure. Moreover, 8 hips in the KT group (17.0%) required a re-revision THA, while none of the patients in the mesh group required a re-revision. The survival rate with radiographic failure as the endpoint in the mesh group was significantly higher than that in the KT group (100% vs 86.7% at 1-year and 95.8% vs 80.0% at 5-years, respectively; p = 0.032). On multivariable analysis evaluating factors associated with radiographic failure, there were no significant associations with any radiographic measurement. Of the 11 hips with radiographic failure, 1 (11.1%), 3 (12.5%), and 7 (58.3%) hips were of Kawanabe classification stages 2, 3, and 4, respectively. CONCLUSIONS: The findings of this study suggest that revision THA using KT plates with bulk structure allografts could provide poorer clinical outcomes than revision THA using a metal mesh with IBG. Although revision THA using KT plates with bulk structural allografts could set the true hip center, there is no association between a high hip center and clinical outcomes. The relationship between the position of the KT plate and the host bone might be considered more carefully.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Humans , Arthroplasty, Replacement, Hip/adverse effects , Bone Transplantation , Surgical Mesh , Treatment Outcome , Prosthesis Failure , Acetabulum/diagnostic imaging , Acetabulum/surgery , Reoperation , Metals , Follow-Up Studies , Retrospective Studies
6.
Sci Rep ; 13(1): 638, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635323

ABSTRACT

Patients with ossification of the ligamentum flavum (OLF) in the lumbar spine may be at high risk of developing concomitant ossification of the entire spinal ligament, but the etiology remains unclear. We investigated the propensity for spinal ligament ossification in asymptomatic subjects with lumbar OLF using the data of 595 Japanese individuals receiving medical check-ups, including computed tomography (CT) scanning. The severity of OLF (total number of intervertebral segments with OLF) of the entire spine on CT was quantified using an OLF index. Subjects with OLF were grouped according to this index: localized OLF (n = 138), intermediate OLF (n = 70), and extensive OLF (n = 31). The proportion of subjects with lumbar OLF increased with increasing OLF index (localized 13.7%, intermediate 41.4%, and extensive 70.9%). Multiple regression analysis found that lumbar OLF index was associated with thoracic OLF index, and co-existence of ossification of the posterior longitudinal ligament (OPLL) of the thoracic and lumbar spine. This study showed that subjects with more multilevel lumbar OLF were more likely to develop multilevel thoracic OLF and to have coexisting OPLL. Patients with lumbar OLF may be a distinctive subgroup with a strong tendency to ossification of the entire spinal ligament.


Subject(s)
Ligamentum Flavum , Ossification of Posterior Longitudinal Ligament , Ossification, Heterotopic , Humans , Osteogenesis , Ligamentum Flavum/diagnostic imaging , Spine , Ligaments , Ossification of Posterior Longitudinal Ligament/diagnostic imaging , Ossification of Posterior Longitudinal Ligament/complications , Ossification, Heterotopic/diagnostic imaging , Ossification, Heterotopic/complications
7.
Life Sci Alliance ; 5(10)2022 10.
Article in English | MEDLINE | ID: mdl-35961782

ABSTRACT

Although inflammation is indispensable for the repair process in Wallerian degeneration (WD), the role of neutrophils in the WD repair process remains unclear. After peripheral nerve injury, neutrophils accumulate at the epineurium but not the parenchyma in the WD region because of the blood-nerve barrier. An increase or decrease in the number of neutrophils delayed or promoted macrophage infiltration from the epineurium into the parenchyma and the repair process in WD. Abundant neutrophil extracellular traps (NETs) were formed around neutrophils, and its inhibition dramatically increased macrophage infiltration into the parenchyma. Furthermore, inhibition of either MIF or its receptor, CXCR4, in neutrophils decreased NET formation, resulting in enhanced macrophage infiltration into the parenchyma. Moreover, inhibiting MIF for just 2 h after peripheral nerve injury promoted the repair process. These findings indicate that neutrophils delay the repair process in WD from outside the parenchyma by inhibiting macrophage infiltration via NET formation and that neutrophils, NETs, MIF, and CXCR4 are therapeutic targets for peripheral nerve regeneration.


Subject(s)
Extracellular Traps , Peripheral Nerve Injuries , Extracellular Traps/physiology , Humans , Macrophages/physiology , Neutrophils , Peripheral Nerve Injuries/pathology , Wallerian Degeneration/pathology
8.
Nat Commun ; 13(1): 3919, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798730

ABSTRACT

There is currently no therapy available for periprosthetic osteolysis, the most common cause of arthroplasty failure. Here, the role of AnxA1 in periprosthetic osteolysis and potential therapeutics were investigated. Reducing the expression of AnxA1 in calvarial tissue was found to be associated with increased osteolytic lesions and the osteolytic lesions induced by debris implantation were more severe in AnxA1-defecient mice than in wild-type mice. AnxA1 inhibits the differentiation of osteoclasts through suppressing NFκB signaling and promoting the PPAR-γ pathway. Administration of N-terminal-AnxA1 (Ac2-26 peptide) onto calvariae significantly reduced osteolytic lesions triggered by wear debris. These therapeutic effects were abrogated in mice that had received the PPAR-γ antagonist, suggesting that the AnxA1/PPAR-γ axis has an inhibitory role in osteolysis. The administration of Ac2-26 suppressed osteolysis induced by TNF-α and RANKL injections in mice. These findings indicate that AnxA1 is a potential therapeutic agent for the treatment of periprosthetic osteolysis.


Subject(s)
Annexin A1 , Bone Resorption , Osteolysis , Animals , Annexin A1/genetics , Annexin A1/metabolism , Bone Resorption/pathology , Mice , Mice, Inbred C57BL , Osteoclasts/metabolism , Osteolysis/etiology , Osteolysis/pathology , Peroxisome Proliferator-Activated Receptors/metabolism
9.
Cell Mol Life Sci ; 79(6): 289, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35536429

ABSTRACT

Accumulating evidences suggest that M2 macrophages are involved with repair processes in the nervous system. However, whether M2 macrophages can promote axon regeneration by directly stimulating axons nor its precise molecular mechanism remains elusive. Here, the current study demonstrated that typical M2 macrophages, which were generated by IL4 simulation, had the capacity to stimulate axonal growth by their direct effect on axons and that the graft of IL4 stimulated macrophages into the region of Wallerian degeneration enhanced axon regeneration and improved functional recovery after PNI. Importantly, uPA (urokinase plasminogen activator)-uPA receptor (uPAR) was identified as the central axis underlying the axon regeneration effect of IL4 stimulated macrophages. IL4 stimulated macrophages secreted uPA, and its inhibition abolished their axon regeneration effect. Injured but not intact axons expressed uPAR to be sensitive to uPA. These results unveil a cellular and molecular mechanism underlying the macrophage related axon regeneration and provide a basis of a novel therapy for PNI.


Subject(s)
Peripheral Nerve Injuries , Urokinase-Type Plasminogen Activator , Axons/physiology , Humans , Interleukin-4/pharmacology , Macrophages/physiology , Nerve Regeneration/physiology , Peripheral Nerve Injuries/therapy , Receptors, Urokinase Plasminogen Activator/genetics
10.
Arthroplast Today ; 14: 105-109, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35252515

ABSTRACT

BACKGROUND: Total hip arthroplasty with femoral shortening is frequently recommended for patients with high hip dislocation. However, the possibility of postoperative rotational deviation of the stem presents a challenge for surgeons. We aimed to determine the optimal position for osteotomy in total hip arthroplasty under full weight-bearing and turning torque by using finite element analysis. METHODS: Four models of femoral osteotomy with 30-mm transverse shortening at 30% (model 30), 40% (model 40), 50% (model 50), and 60% (model 60) from the proximal end of the full length of the Exeter stem were constructed. Using finite element analysis, the constructs were first analyzed under an axial load of 1500 N and then with an added torsional load of 10°. RESULTS: The analyses under torsional loading conditions revealed that the maximum von Mises stress on the stem in each model occurred at the proximal end of the distal fragment and the distal side of the stem. The maximum stress values at the stem were 819 MPa (model 30), 825 MPa (model 40), 916 MPa (model 50), and 944 MPa (model 60). The maximum stress values at the osteotomy site of the medullary cavity side of the distal bone fragment were 761 MPa (model 30), 165 MPa (model 40), 187 MPa (model 50), and 414 MPa (model 60). CONCLUSIONS: The osteotomy level should be around the proximal 40% of the full length of the Exeter stem, which is most suitable for rotation stability in the early postoperative period.

11.
Biomater Sci ; 10(9): 2182-2187, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35348130

ABSTRACT

Double network hydrogels (DN gels) composed of poly (2-acrylamido-2-methyl propanesulfonic acid) (PAMPS) as the brittle first network and poly (N,N-dimethylacrylamide) (PDMA) as the ductile second network have been proven to be a substitute biomaterial for cartilage, with promising biocompatibility and low toxicity, when they are used as bulk materials. For their further applications as articular cartilages, it is essential to understand the biological reactions and adverse events that might be initiated by wear particles derived from these materials. In this study, we used DN gel micro-particles of sizes 4 µm and 10 µm generated by the grinding method to mimic wearing debris of DN gels. The biological responses to particles were then evaluated in a macrophage-cultured system and an inflammatory osteolysis murine model. Our results demonstrated that DN gel particles have the ability to activate macrophages and promote the expression of Tnf-α, both in vitro and in vivo. Furthermore, the implantation of these particles onto calvarial bone triggered local inflammation and bone loss in a mouse model. Our data reveal that the potential foreign body responses to the generated particles from artificial cartilage should receive more attention in artificial cartilage engineering with the goal of developing a safer biocompatible substitute.


Subject(s)
Cartilage, Articular , Hydrogels , Animals , Biocompatible Materials/pharmacology , Hydrogels/pharmacology , Mice , Tensile Strength
12.
Am J Pathol ; 192(5): 794-804, 2022 05.
Article in English | MEDLINE | ID: mdl-35292262

ABSTRACT

Rapidly destructive coxopathy (RDC), a rare disease of unknown etiology, is characterized by the rapid destruction of the hip joint. In the current study, the potential involvement of inflammasome signaling in the progression of RDC was investigated. Histopathologic changes and the gene expression of inflammasome activation markers in hip synovial tissues collected from patients with RDC were evaluated and compared with those of osteoarthritis and osteonecrosis of the femoral head patients. The synovial tissues of patients with RDC exhibited remarkable increases in the number of infiltrated macrophages and osteoclasts, and the expression of inflammasome activation markers was also increased compared with those of osteoarthritis and osteonecrosis of the femoral head patients. To further understand the histopathologic changes in the joint, a co-culture model of macrophages and synoviocytes that mimicked the joint environment was developed. Remarkably, the gene expression levels of NLRP3, GSDMD, IL1B, TNFA, ADMTS4, ADMTS5, MMP3, MMP9, and RANKL were significantly elevated in the synoviocytes that were co-cultured with activated THP-1 macrophages, suggesting the association between synovitis and inflammasome activation. Consistent with these findings, osteoclast precursor cells that were co-cultured with stimulated synoviocytes exhibited an increased number of tartrate-resistant acid phosphatase-positive cells, compared with cells that were co-cultured with non-stimulated synoviocytes. These findings suggest that the activation of inflammasome signaling in the synovium results in an increase in local inflammation and osteoclastogenesis, thus leading to the rapid bone destruction in RDC.


Subject(s)
Bone Diseases, Metabolic , Osteoarthritis , Osteonecrosis , Synovitis , Biomarkers/metabolism , Bone Diseases, Metabolic/metabolism , Humans , Inflammasomes/metabolism , Osteoarthritis/pathology , Osteoclasts/metabolism , Synovial Membrane/metabolism , Synovitis/pathology
13.
J Biomed Mater Res B Appl Biomater ; 110(7): 1587-1593, 2022 07.
Article in English | MEDLINE | ID: mdl-35122380

ABSTRACT

The introduction of vitamin E-blended ultra-high molecular weight polyethylene (VE-UHMWPE) for use in prosthetic components of hip implants has resulted in the production of implants that have excellent mechanical properties and substantially less adverse cellular responses. Given the importance of a biological response to wear in the survival of a prosthesis, we generated wear debris from UHMWPE that had been prepared with different concentrations of vitamin E of 0.1, 0.3, 0.5, and 1% and evaluated their biological reaction in vitro and in vivo. All types of VE-UHMWPE debris promoted a significantly lower expression of Tnf-α in murine peritoneal macrophages than that induced by conventional UHMWPE debris. However, levels of Tnf-α were not significantly different among the macrophages that were stimulated with VE-UHMWPE wear at the concentrations tested. The ability of wear debris to induce inflammatory osteolysis was assessed in a mouse calvarial osteolysis model. The expressions of Tnf-α, Il-6, and Rankl in granulomatous tissue formed around the wear debris were significantly reduced in mice that had been implanted with 0.3%VE-UHMWPE debris as compared to the corresponding values for mice that had been implanted with UHMWPE debris. Consistent with this finding, 0.3%VE-UHMWPE debris showed the lowest osteolytic activity, as evidenced by the reduced bone resorption area, the degree of infiltration of inflammatory cells and the TRAP staining area. Our results suggested that a 0.3% vitamin E concentration is the most appropriate concentration for use in prosthetic components with a reduced adverse cellular response for prolonging the life-span of the implant.


Subject(s)
Osteolysis , Polyethylene , Animals , Disease Models, Animal , Mice , Osteolysis/metabolism , Polyethylene/adverse effects , Polyethylenes/pharmacology , Prosthesis Failure , Skull/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vitamin E/pharmacology
14.
NPJ Regen Med ; 7(1): 12, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35091563

ABSTRACT

Since Schwann cells (SCs) support axonal growth at development as well as after peripheral nerve injury (PNI), developing SCs might be able to promote axon regeneration after PNI. The purpose of the current study was to elucidate the capability of developing SCs to induce axon regeneration after PNI. SC precursors (SCPs), immature SCs (ISCs), repair SCs (RSCs) from injured nerves, and non-RSCs from intact nerves were tested by grafting into acellular region of rat sciatic nerve with crush injury. Both of developing SCs completely failed to support axon regeneration, whereas both of mature SCs, especially RSCs, induced axon regeneration. Further, RSCs but not SCPs promoted neurite outgrowth of adult dorsal root ganglion neurons. Transcriptome analysis revealed that the gene expression profiles were distinctly different between RSCs and SCPs. These findings indicate that developing SCs are markedly different from mature SCs in terms of functional and molecular aspects and that RSC is a viable candidate for regenerative cell therapy for PNI.

16.
Bioeng Transl Med ; 6(3): e10232, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34589604

ABSTRACT

Macrophages are generally thought to play a key role in the pathogenesis of aseptic loosening through initiating periprosthetic inflammation and pathological bone resorption. The aim of this study was to identify macrophage-derived factors that promote osteoclast differentiation and periprosthetic bone destruction. To achieve this, we examined the effects of 12 macrophage-derived factors that were identified by RNA-seq analysis of stimulated macrophages on osteoclast differentiation. Surprisingly, thymidine phosphorylase (TYMP) was found to trigger significant number of osteoclasts that exhibited resorbing activities on dentine slices. Functionally, TYMP knockdown reduced the number of osteoclasts in macrophages that had been stimulated with polyethylene debris. TYMP were detected in serum and synovial tissues of patients that had been diagnosed with aseptic loosening. Moreover, the administration of TYMP onto calvariae of mice induced pathological bone resorption that was accompanied by an excessive infiltration of inflammatory cells and osteoclasts. The RNA-seq for TYMP-induced-osteoclasts was then performed in an effort to understand action mode of TYMP. TYMP stimulation appeared to activate the tyrosine kinase FYN signaling associated with osteoclast formation. Oral administration of saracatinib, a FYN kinase inhibitor, significantly suppressed formation of bone osteolytic lesions in a polyethylene debris-induced osteolysis model. Our findings highlight a novel molecular target for therapeutic intervention in periprosthetic osteolysis.

17.
Bone ; 153: 116140, 2021 12.
Article in English | MEDLINE | ID: mdl-34364014

ABSTRACT

A growing body of evidence suggests that immune factors that regulate osteoclast differentiation and bone resorption might be promising therapeutic agents for the treatment of osteoporosis. The expression of CLCF1, an immune cell-derived molecule, has been reported to be reduced in patients with postmenopausal osteoporosis. This suggests that it may be involved in bone remodeling. Thus, we explored the functional role of CLCF1 in osteoclastogenesis and bone loss associated with osteoporosis. Surprisingly, the administration of recombinant CLCF1 repressed excessive bone loss in ovariectomized mice and prevented RANKL-induced bone loss in calvarial mouse model. Likewise, the addition of recombinant CLCF1 to RANKL-stimulated monocytes resulted in a significant suppression in the number of differentiated osteoclasts with small resorption areas being observed on dentine slices in vitro. At the same dosage, CLCF1 did not exhibit any detectable negative effects on the differentiation of osteoblasts. Mechanistically, the inhibition of osteoclast differentiation by the CLCF1 treatment appears to be related to the activation of interferon signaling (IFN) and the suppression of the NF-κB signaling pathway. Interestingly, the expression of the main components of IFN-signaling namely, STAT1 and IRF1, was detected in macrophages as early as 1 h after stimulation with CLCF1. Consistent with these results, the blockade of STAT1 in macrophages abolished the inhibitory effect of CLCF1 on osteoclast differentiation in vitro. These collective findings point to a novel immunoregulatory function of CLCF1 in bone remodeling and highlight it as a potentially useful therapeutic agent for the treatment of osteoporosis.


Subject(s)
Bone Resorption , Osteoporosis , Animals , Cell Differentiation , Humans , Interferons , Mice , NF-kappa B/metabolism , Osteoclasts/metabolism , Osteogenesis , Osteoporosis/drug therapy , RANK Ligand , Signal Transduction
18.
Expert Rev Endocrinol Metab ; 16(5): 217-228, 2021 09.
Article in English | MEDLINE | ID: mdl-34310233

ABSTRACT

Introduction: Osteoporosis is characterized by the fragility of bones, leading to fractures and, consequently, the deterioration of functional capacity and quality of life. Postmenopausal women, in particular, are prone to osteoporosis and often require anti-osteoporosis treatment. In the last few decades, various anti-osteoporosis drugs have been approved for clinical use. In an aging society, osteoporosis cannot be treated using a single agent; therefore, switching therapy is an important treatment strategy.Areas covered: This review covers switching therapy in patients with postmenopausal osteoporosis. It's extremely important to understand the characteristics of each drug including; limitations on the duration of use, side effects due to long-term use (such as atypical femur fracture and osteonecrosis of the jaw) or discontinuation (such as rebound phenomenon), compliance, and ability to prevent fractures. We review and summarize the risks and benefits of switching therapy.Expert opinion: When switching therapy, the order of drug administration is important. Routine monitoring should be continued after switching treatments. We recommend first using osteoanabolic agents in postmenopausal women with severe osteoporosis. In addition, identifying predictors of the efficacy and side effects of treatment may help prevent the inappropriate use of drugs for the treatment of osteoporosis.


Subject(s)
Bone Density Conservation Agents , Osteoporosis, Postmenopausal , Osteoporosis , Bone Density , Bone Density Conservation Agents/therapeutic use , Female , Humans , Osteoporosis, Postmenopausal/drug therapy , Quality of Life
19.
iScience ; 24(6): 102643, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34142066

ABSTRACT

Synovial macrophages that are activated by cartilage fragments initiate synovitis, a condition that promotes hypertrophic changes in chondrocytes leading to cartilage degeneration in OA. In this study, we analyzed the molecular response of chondrocytes under condition of this type of stimulation to identify a molecular therapeutic target. Stimulated macrophages promoted hypertrophic changes in chondrocytes resulting in production of matrix-degrading enzymes of cartilage. Among the top-upregulated genes, FliI was found to be released from activated chondrocytes and exerted autocrine/paracrine effects on chondrocytes leading to an increase in expression of catabolic and hypertrophic factors. Silencing FliI in stimulated cells significantly reduced expression of catabolic and hypertrophic factors in cocultured chondrocytes. Our further results demonstrated that the FliI-TLR4-ERK1/2 axis is involved in the hypertrophic signaling of chondrocytes and catabolism of cartilage. Our findings provide a new insight into the pathogenesis of OA and identify a potentially new molecular target for diagnostics and therapeutics.

20.
Int J Mol Sci ; 22(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806315

ABSTRACT

Systemic injection of a nerve growth factor (NGF) antibody has been proven to have a significant relevance in relieving osteoarthritis (OA) pain, while its adverse effects remain a safety concern for patients. A local low-dose injection is thought to minimize adverse effects. In this study, OA was induced in an 8-week-old male Sprague-Dawley (SD) rat joint by monoiodoacetate (MIA) injection for 2 weeks, and the effect of weekly injections of low-dose (1, 10, and 100 µg) NGF antibody or saline (control) was evaluated. Behavioral tests were performed, and at the end of week 6, all rats were sacrificed and their knee joints were collected for macroscopic and histological evaluations. Results showed that 100 µg NGF antibody injection relieved pain in OA rats, as evidenced from improved weight-bearing performance but not allodynia. In contrast, no significant differences were observed in macroscopic and histological scores between rats from different groups, demonstrating that intra-articular treatment does not worsen OA progression. These results suggest that local administration yielded a low effective NGF antibody dose that may serve as an alternative approach to systemic injection for the treatment of patients with OA.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Arthritis, Experimental/therapy , Nerve Growth Factor/antagonists & inhibitors , Osteoarthritis/therapy , Pain Management/methods , Animals , Arthritis, Experimental/pathology , Arthritis, Experimental/physiopathology , Cartilage, Articular/pathology , Dose-Response Relationship, Immunologic , Hyperalgesia/physiopathology , Hyperalgesia/therapy , Injections, Intra-Articular , Iodoacetic Acid/toxicity , Male , Nerve Growth Factor/immunology , Osteoarthritis/pathology , Osteoarthritis/physiopathology , Rats , Rats, Sprague-Dawley , Weight-Bearing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...