Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(4): e63024, 2013.
Article in English | MEDLINE | ID: mdl-23638177

ABSTRACT

Angiogenesis, the development of new blood vessels, is essential for tumour growth; this process is stimulated by the secretion of numerous growth factors including platelet derived growth factor (PDGF). PDGF signalling, through its receptor platelet derived growth factor receptor (PDGFR), is involved in vessel maturation, stimulation of angiogenesis and upregulation of other angiogenic factors, including vascular endothelial growth factor (VEGF). PDGFR is a promising target for anti-cancer therapy because it is expressed on both tumour cells and stromal cells associated with the vasculature. MLN0518 (tandutinib) is a potent inhibitor of type III receptor tyrosine kinases that demonstrates activity against PDGFRα/ß, FLT3 and c-KIT. In this study a multi-parametric MRI and histopathological approach was used to interrogate changes in vascular haemodynamics, structural response and hypoxia in C6 glioma xenografts in response to treatment with MLN0518. The doubling time of tumours in mice treated with MLN0518 was significantly longer than tumours in vehicle treated mice. The perfused vessel area, number of alpha smooth muscle actin positive vessels and hypoxic area in MLN0518 treated tumours were also significantly lower after 10 days treatment. These changes were not accompanied by alterations in vessel calibre or fractional blood volume as assessed using susceptibility contrast MRI. Histological assessment of vessel size and total perfused area did not demonstrate any change with treatment. Intrinsic susceptibility MRI did not reveal any difference in baseline R2* or carbogen-induced change in R2*. Dynamic contrast-enhanced MRI revealed anti-vascular effects of MLN0518 following 3 days treatment. Hypoxia confers chemo- and radio-resistance, and alongside PDGF, is implicated in evasive resistance to agents targeted against VEGF signalling. PDGFR antagonists may improve potency and efficacy of other therapeutics in combination. This study highlights the challenges of identifying appropriate quantitative imaging response biomarkers in heterogeneous models, particularly considering the multifaceted roles of angiogenic growth factors.


Subject(s)
Brain Neoplasms/drug therapy , Diagnostic Imaging/methods , Glioma/drug therapy , Piperazines/therapeutic use , Quinazolines/therapeutic use , Xenograft Model Antitumor Assays , Animals , Biomarkers, Tumor/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Contrast Media , Diffusion Magnetic Resonance Imaging , Female , Glioma/pathology , Humans , Mice , Mice, Nude , Piperazines/pharmacology , Quinazolines/pharmacology , Rats
2.
Clin Cancer Res ; 17(23): 7313-23, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21903769

ABSTRACT

PURPOSE: The clinical success of the first-in-class proteasome inhibitor bortezomib (VELCADE) has validated the proteasome as a therapeutic target for treating human cancers. MLN9708 is an investigational proteasome inhibitor that, compared with bortezomib, has improved pharmacokinetics, pharmacodynamics, and antitumor activity in preclinical studies. Here, we focused on evaluating the in vivo activity of MLN2238 (the biologically active form of MLN9708) in a variety of mouse models of hematologic malignancies, including tumor xenograft models derived from a human lymphoma cell line and primary human lymphoma tissue, and genetically engineered mouse (GEM) models of plasma cell malignancies (PCM). EXPERIMENTAL DESIGN: Both cell line-derived OCI-Ly10 and primary human lymphoma-derived PHTX22L xenograft models of diffuse large B-cell lymphoma were used to evaluate the pharmacodynamics and antitumor effects of MLN2238 and bortezomib. The iMyc(Cα)/Bcl-X(L) GEM model was used to assess their effects on de novo PCM and overall survival. The newly developed DP54-Luc-disseminated model of iMyc(Cα)/Bcl-X(L) was used to determine antitumor activity and effects on osteolytic bone disease. RESULTS: MLN2238 has an improved pharmacodynamic profile and antitumor activity compared with bortezomib in both OCI-Ly10 and PHTX22L models. Although both MLN2238 and bortezomib prolonged overall survival, reduced splenomegaly, and attenuated IgG2a levels in the iMyc(Cα)/Bcl-X(L) GEM model, only MLN2238 alleviated osteolytic bone disease in the DP54-Luc model. CONCLUSIONS: Our results clearly showed the antitumor activity of MLN2238 in a variety of mouse models of B-cell lymphoma and PCM, supporting its clinical development. MLN9708 is being evaluated in multiple phase I and I/II trials.


Subject(s)
Antineoplastic Agents/pharmacology , Boron Compounds/pharmacology , Glycine/analogs & derivatives , Lymphoma, B-Cell/drug therapy , Neoplasms, Plasma Cell/drug therapy , Animals , Antineoplastic Agents/pharmacokinetics , Boron Compounds/administration & dosage , Boron Compounds/pharmacokinetics , Boronic Acids/pharmacokinetics , Boronic Acids/pharmacology , Bortezomib , Cell Line, Tumor , Glycine/administration & dosage , Glycine/pharmacokinetics , Glycine/pharmacology , Humans , Lymphoma, B-Cell/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Neoplasms, Plasma Cell/metabolism , Osteolysis/drug therapy , Osteolysis/etiology , Protease Inhibitors/pharmacology , Proteasome Inhibitors , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Xenograft Model Antitumor Assays
3.
Mol Cancer Ther ; 8(12): 3234-43, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19934276

ABSTRACT

Understanding a compound's preclinical pharmacokinetic, pharmacodynamic, and efficacy relationship can greatly facilitate its clinical development. Bortezomib is a first-in-class proteasome inhibitor whose pharmacokinetic/pharmacodynamic parameters are poorly understood in terms of their relationship with efficacy. Here we characterized the bortezomib pharmacokinetic/pharmacodynamic/efficacy relationship in the CWR22 and H460 xenograft models. These studies allowed us to specifically address the question of whether the lack of broad bortezomib activity in solid tumor xenografts was due to insufficient tumor penetration. In vivo studies showed that bortezomib treatment resulted in tumor growth inhibition in CWR22 xenografts, but not in H460 xenografts. Using 20S proteasome inhibition as a pharmacodynamic marker and analyzing bortezomib tumor exposures, we show that efficacy was achieved only when suitable drug exposures drove proteasome inhibition that was sustained over time. This suggested that both the magnitude and duration of proteasome inhibition were important drivers of efficacy. Using dynamic contrast-enhanced magnetic resonance imaging and high-resolution computed tomographic imaging of vascular casts, we characterized the vasculature of CWR22 and H460 xenograft tumors and identified prominent differences in vessel perfusion, permeability, and architecture that ultimately resulted in variations in bortezomib tumor exposure. Comparing and contrasting the differences between a bortezomib-responsive and a bortezomib-resistant model with these techniques allowed us to establish a relationship among tumor perfusion, drug exposure, pharmacodynamic response and efficacy, and provided an explanation for why some solid tumor models do not respond to bortezomib treatment.


Subject(s)
Boronic Acids/therapeutic use , Neoplasms/drug therapy , Pyrazines/therapeutic use , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Area Under Curve , Boronic Acids/pharmacokinetics , Bortezomib , Cell Line, Tumor , Cell Survival/drug effects , Humans , Magnetic Resonance Imaging/methods , Male , Metabolic Clearance Rate , Mice , Mice, SCID , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic/diagnostic imaging , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors , Pyrazines/pharmacokinetics , Treatment Outcome , Tumor Burden/drug effects , X-Ray Microtomography/methods
4.
J Immunol ; 177(3): 1886-93, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16849501

ABSTRACT

T cell effector functions contribute to the pathogenesis of rheumatoid arthritis. PKC-theta transduces the signal from the TCR through activation of transcription factors NF-kappaB, AP-1, and NFAT. We examined the effects of PKC-theta deficiency on two Th1-dependent models of Ag-induced arthritis and found that PKC-theta-deficient mice develop disease, but at a significantly diminished severity compared with wild-type mice. In the methylated BSA model, cellular infiltrates and articular cartilage damage were mild in the PKC-theta-deficient mice as compared with wild-type mice. Quantitation of histopathology reveals 63 and 77% reduction in overall joint destruction in two independent experiments. In the type II collagen-induced arthritis model, we observed a significant reduction in clinical scores (p < 0.01) in three independent experiments and diminished joint pathology (p < 0.005) in PKC-theta-deficient compared with wild-type littermates. Microcomputerized tomographic imaging revealed that PKC-theta deficiency also protects from bone destruction. PKC-theta-deficient CD4(+) T cells show an impaired proliferative response, decreased intracellular levels of the cytokines IFN-gamma, IL-2, and IL-4, and significantly diminished cell surface expression of the activation markers CD25, CD69, and CD134/OX40 on memory T cells. We demonstrate decreased T-bet expression and significantly reduced IgG1 and IgG2a anti-collagen II Ab levels in PKC-theta-deficient mice. Collectively, our results demonstrate that PKC-theta deficiency results in an attenuated response to Ag-induced arthritis, which is likely mediated by the reduced T cell proliferation, Th1/Th2 cell differentiation and T cell activation before and during disease peak.


Subject(s)
Antigens/administration & dosage , Arthritis, Experimental/immunology , Arthritis, Experimental/prevention & control , Isoenzymes/deficiency , Isoenzymes/genetics , Protein Kinase C/deficiency , Protein Kinase C/genetics , Serum Albumin, Bovine/administration & dosage , Th1 Cells/immunology , Animals , Antigens/immunology , Arthritis, Experimental/enzymology , Arthritis, Experimental/genetics , Autoantibodies/biosynthesis , Autoantibodies/blood , Cell Movement/genetics , Cell Movement/immunology , Cell Proliferation , Collagen/administration & dosage , Collagen/immunology , Down-Regulation/genetics , Down-Regulation/immunology , Female , Immunophenotyping , Isoenzymes/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Protein Kinase C/physiology , Protein Kinase C-theta , Serum Albumin, Bovine/immunology , T-Box Domain Proteins , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Th1 Cells/pathology , Transcription Factors/biosynthesis , Up-Regulation/immunology
5.
J Med Chem ; 47(8): 2157-65, 2004 Apr 08.
Article in English | MEDLINE | ID: mdl-15056011

ABSTRACT

Lipoxin A(4) (LXA(4)) is a structurally and functionally distinct natural product called an eicosanoid, which displays immunomodulatory and anti-inflammatory activity but is rapidly metabolized to inactive catabolites in vivo. A previously described analogue of LXA(4), methyl (5R,6R,7E,9E,11Z,13E,15S)-16-(4-fluorophenoxy)-5,6,15-trihydroxy-7,9,11,13-hexadecatetraenoate (2, ATLa), was shown to have a poor pharmacokinetic profile after both oral and intravenous administration, as well as sensitivity to acid and light. The chemical stability of the corresponding E,E,E-trien-11-yne analogue, 3, was improved over 2 without loss of efficacy in the mouse air pouch model of inflammation. Careful analysis of the plasma samples from the pharmacokinetic assays for both 2 and 3 identified a previously undetected metabolite, which is consistent with metabolism by beta-oxidation. The formation of the oxidative metabolites was eliminated with the corresponding 3-oxatetraene, 4, and the 3-oxatrien-11-yne, 5, analogues of 2. Evaluation of 3-oxa analogues 4 and 5 in calcium ionophore-induced acute skin inflammation model demonstrated similar topical potency and efficacy compared to 2. The 3-oxatrien-11-yne analogue, 5, is equipotent to 2 in an animal model of inflammation but has enhanced metabolic and chemical stability and a greatly improved pharmacokinetic profile.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Lipoxins/chemical synthesis , Phenyl Ethers/chemical synthesis , Acute Disease , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Calcimycin , Dermatitis, Contact/drug therapy , Dermatitis, Contact/etiology , Drug Stability , Ionophores , Lipoxins/metabolism , Lipoxins/pharmacology , Male , Mice , Mice, Inbred BALB C , Oxidation-Reduction , Phenyl Ethers/metabolism , Phenyl Ethers/pharmacology , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...