Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(5): e11306, 2024 May.
Article in English | MEDLINE | ID: mdl-38737567

ABSTRACT

Reproduction, although absolutely essential to a species' persistence, is in itself challenging. As anthropogenic change increasingly affects every landscape on Earth, it is critical to understand how specific pressures impact the reproductive efforts of individuals, which directly contribute to the success or failure of populations. However, organisms rarely encounter a single burden at a time, and the interactions of environmental challenges can have compounding effects. Understanding environmental and physiological pressures is difficult because they are often context-dependent and not generalizable, but long-term monitoring across variable landscapes and weather patterns can improve our understanding of these complex interactions. We tested the effects of urbanization, climate, and individual condition on the reproductive investment of wild side-blotched lizards (Uta stansburiana) by measuring physiological/reproductive metrics from six populations in urban and rural areas over six consecutive years of variable precipitation. We observed that reproductive stage affected body condition, corticosterone concentration, and oxidative stress. We also observed that reproductive patterns differed between urban and rural populations depending on rainfall, with rural animals increasing reproductive investment during rainier years compared to urban conspecifics, and that reproductive decisions appeared to occur early in the reproductive process. These results demonstrate the plastic nature of a generalist species optimizing lifetime fitness under varying conditions.

2.
Animals (Basel) ; 13(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38066946

ABSTRACT

Reproduction is considered an energetically and physiologically demanding time in the life of an animal. Changes in physiological stress are partly reflected in changes in glucocorticoid metabolites and can be measured from fecal samples. We examined levels of fecal glucocorticoid metabolites (fGCMs) in 24 captive coyotes (Canis latrans) to investigate responses to the demands of reproduction. Using 12 pairs of coyotes (five pairs produced pups, seven pairs did not), we analyzed 633 fecal samples covering 11 biological periods (e.g., breeding, gestation, and lactation). Levels of fGCMs showed high individual variability, with females having higher fGCM levels than males. The production of pups showed no statistical effect on fGCM levels among females or males. Among females, fGCM levels were highest during 4-6 weeks of gestation compared to other periods but were not significantly different between pregnant and nonpregnant females. Among males, the highest fGCM levels were during 1-3 weeks of gestation compared to other periods, but were not significantly different between males with a pregnant mate versus nonpregnant mate. Of females producing pups, litter size did not influence fGCM levels. Given that they were fed ample food throughout the year, we found that the demands of producing pups did not appear to statistically influence measures of fGCM concentrations in captive coyotes.

3.
PLoS One ; 16(7): e0253604, 2021.
Article in English | MEDLINE | ID: mdl-34197517

ABSTRACT

Climate change and anthropogenic modifications to the landscape can have both positive and negative effects on an animal. Linking landscape change to physiological stress and fitness of an animal is a fundamental tenet to be examined in applied ecology. Cortisol is a glucocorticoid hormone that can be used to indicate an animal's physiological stress response. In the Sierra Nevada Mountains of California, fishers (Pekania pennanti) are a threatened mesocarnivore that have been subjected to rapid landscape changes due to anthropogenic modifications and tree mortality related to a 4-year drought. We measured cortisol concentrations in the hair of 64 fishers (41 females, 23 males) captured and radio-collared in the Sierra National Forest, California. We addressed two main questions: (1) Is the physiological stress response of fishers influenced by anthropogenic factors, habitat type, canopy cover, and tree mortality due to drought in their home range? (2) Does the physiological stress response influence survival, reproduction, or body condition? We examined these factors within a fisher home range at 3 scales (30, 60, 95% isopleths). Using model selection, we found that tree mortality was the principle driver influencing stress levels among individual fishers with female and male fishers having increasing cortisol levels in home ranges with increasing tree mortality. Most importantly, we also found a link between physiological stress and demography where female fishers with low cortisol levels had the highest annual survival rate (0.94), whereas females with medium and high cortisol had lower annual survival rates, 0.78 and 0.81, respectively. We found no significant relationships between cortisol levels and body condition, male survival, or litter size. We concluded that tree mortality related to a 4-year drought has created a "landscape of stress" for this small, isolated fisher population.


Subject(s)
Climate Change , Droughts , Endangered Species/statistics & numerical data , Mustelidae/physiology , Stress, Physiological , Animals , California , Ecological Parameter Monitoring/statistics & numerical data , Female , Forests , Hair/chemistry , Hydrocortisone/analysis , Male , Survival Rate , Trees
4.
Gen Comp Endocrinol ; 310: 113807, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33964286

ABSTRACT

Polar bears (Ursus maritimus) use sea ice to access marine mammal prey. In Alaska's Southern Beaufort Sea, the declining availability of sea ice habitat in summer and fall has reduced opportunities for polar bears to routinely hunt on the ice for seals, their primary prey. This reduced access to prey may result in physiological stress with subsequent potential consequences to reproductive function (physiological changes that accompany reproduction), which can be measured via reproductive hormones. Hormone concentrations in hair can be used as a minimally invasive alternative to serum concentrations, which must come from animal captures. Hair samples also provide a long-term average measurement of hormone concentrations that is not influenced by short-term fluctuations like that of serum. The aim of this study was (1) to determine if a radioimmunoassay could be used to measure adrenal and reproductive hormones in polar bear hair, and (2) to determine what the relationship is between these hormones and other reproductive, condition, and demographic parameters of polar bears. We successfully validated this method for cortisol, progesterone, estradiol, and testosterone through the analysis of hair and serum of 141 free-ranging polar bears. We found that while hair cannot be used to estimate serum hormone concentrations during the breeding season, hormone concentrations in hair can be used to measure reproductive function in polar bears. Further, our findings support trends in previous studies measuring hormone concentrations in serum. We found that adrenal and some reproductive hormones were positively correlated in hair samples of females. Associations between hormone concentrations in hair and serum did not vary relative to reproductive status of adult females. Serum testosterone increased throughout the breeding season for adult males and was significantly associated with body mass index (BMI). Our research supports the use of hair as a measure of reproductive function in polar bears and allows us to monitor the future effects of climate change on polar bear physiology.


Subject(s)
Ursidae , Animals , Arctic Regions , Climate Change , Female , Hair , Hormones , Ice Cover , Male
5.
J Exp Zool A Ecol Integr Physiol ; 327(5): 333-346, 2017 06.
Article in English | MEDLINE | ID: mdl-29356384

ABSTRACT

Assessing the health and condition of animals in their natural environment can be problematic. Many physiological metrics, including immunity, are highly influenced by specific context and recent events to which researchers may be unaware. Thus, using a multifaceted physiological approach and a context-specific analysis encompassing multiple time scales can be highly informative. Ecoimmunological tools in particular can provide important indications to the health of animals in the wild. We collected blood and hair samples from free-ranging polar bears (Ursus maritimus) in the southern Beaufort Sea and examined the influence of sex, age, and reproductive status on metrics of immunity, stress, and body condition during 2013-2015. We examined metrics of innate immunity (bactericidal ability and lysis) and stress (hair cortisol, reactive oxygen species, and oxidative barrier), in relation to indices of body condition considered to be short term (urea to creatinine ratio; UC ratio) and long term (storage energy and body mass index). We found the factors of sex, age, and reproductive status of the bear were critical for interpreting different physiological metrics. Additionally, the metrics of body condition were important predictors for stress indicators. Finally, many of these metrics differed between years, illustrating the need to examine populations on a longer time scale. Taken together, this study demonstrates the complex relationship between multiple facets of physiology and how interpretation requires us to examine individuals within a specific context.


Subject(s)
Ursidae/immunology , Age Factors , Animals , Arctic Regions , Body Mass Index , Female , Hair/chemistry , Hydrocortisone/analysis , Immunity, Innate/immunology , Male , Reactive Oxygen Species/blood , Serum Bactericidal Test/veterinary , Sex Factors , Stress, Physiological/immunology , Ursidae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...