Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 92(7): 5100-5106, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32153187

ABSTRACT

Raman and transmission FTIR spectroscopic techniques have been coupled in a new homemade reactor-cell designed in a joint CSIC-LCS collaboration. The setup is easily adapted to any FTIR and fiber-coupled Raman spectrometers and gas analysis techniques. It allows for simultaneous operando FTIR and Raman spectroscopic measurement, which provide complementary characterization of adsorbed species, reaction intermediates, and structural properties of the catalyst. This system was validated with the study of vanadium-based catalysts during propane oxydehydrogenation (ODH). The combined use of both spectroscopies with gas analysis techniques to measure the activity contributes to the understanding of propane ODH and the identification of the role of different oxygen species bound to vanadium sites. For example, the simultaneous characterization of the catalyst under the same conditions by IR and Raman confirms that the V═O mode has the same frequency in both spectroscopies and that bridging oxygen sites (V-O-V, V-O-Zr) present higher activity than terminal V═O bonds. These results demonstrate the high potential of the new simultaneous transmission IR-Raman operando rig to correlate the activity and the structure of catalysts, thus assisting the rational design of catalytic processes.

2.
Polymers (Basel) ; 10(7)2018 Jul 04.
Article in English | MEDLINE | ID: mdl-30960660

ABSTRACT

Polyacrylonitrile (PAN) is one of the materials most often used for carbonization. PAN nanofiber mats, created by electrospinning, are an especially interesting source to gain carbon nanofibers. A well-known problem in this process is fixing the PAN nanofiber mats during the stabilization process which is necessary to avoid contraction of the fibers, correlated with an undesired increase in the diameter and undesired bending. Fixing this issue typically results in breaks in the nanofiber mats if the tension is too high, or it is not strong enough to keep the fibers as straight as in the original state. This article suggests a novel method to overcome this problem by electrospinning on an aluminum substrate on which the nanofiber mat adheres rigidly, stabilizing the composite and carbonizing afterwards either with or without the aluminum substrate to gain either a pure carbon nanofiber mat or a metal/carbon composite.

SELECTION OF CITATIONS
SEARCH DETAIL
...