Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38740136

ABSTRACT

OBJECTIVES: Children account for a significant proportion of antibiotic consumption in low- and middle-income countries, with overuse occurring in formal and informal health sectors. This study assessed the prevalence and predictors of residual antibiotics in the blood of children in the Mbeya and Morogoro regions of Tanzania. METHODS: The cross-sectional community-based survey used two-stage cluster sampling to include children aged under 15 years. For each child, information on recent illness, healthcare-seeking behaviour, and use of antibiotics, as well as a dried blood spot sample, were collected. The samples underwent tandem mass spectrometry analysis to quantify the concentrations of 15 common antibiotics. Associations between survey variables and the presence of residual antibiotics were assessed using mixed-effects logistic regression. RESULTS: In total, 1742 children were surveyed, and 1699 analysed. The overall prevalence of residual antibiotics in the blood samples was 17.4% (296/1699), the highest among children under the age of 5 years. The most frequently detected antibiotics were trimethoprim (144/1699; 8.5%), sulfamethoxazole (102/1699; 6.0%), metronidazole (61/1699; 3.6%), and amoxicillin (43/1699; 2.5%). The strongest predictors of residual antibiotics in the blood were observed presence of antibiotics at home (adjusted odds ratio [aOR] = 2.9; 95% CI, 2.0-4.1) and reported consumption of antibiotics in the last 2 weeks (aOR = 2.5; 95% CI, 1.6-3.9). However, half (145/296) of the children who had residual antibiotics in their blood, some with multiple antibiotics, had no reported history of illness or antibiotic consumption in the last 2 weeks, and antibiotics were not found at home. DISCUSSION: This study demonstrated a high prevalence of antibiotic exposure among children in Tanzanian communities, albeit likely underestimated, especially for compounds with short half-lives. A significant proportion of antibiotic exposure was unexplained and may have been due to unreported self-medication or environmental pathways. Incorporating biomonitoring into surveillance strategies can help better understand exposure patterns and design antibiotic stewardship interventions.

2.
Drug Metab Dispos ; 44(1): 151-61, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26553012

ABSTRACT

Efavirenz (EFV) is principally metabolized by CYP2B6 to 8-hydroxy-efavirenz (8OH-EFV) and to a lesser extent by CYP2A6 to 7-hydroxy-efavirenz (7OH-EFV). So far, most metabolite profile analyses have been restricted to 8OH-EFV, 7OH-EFV, and EFV-N-glucuronide, even though these metabolites represent a minor percentage of EFV metabolites present in vivo. We have performed a quantitative phase I and II metabolite profile analysis by tandem mass spectrometry of plasma, cerebrospinal fluid (CSF), and urine samples in 71 human immunodeficiency virus patients taking efavirenz, prior to and after enzymatic (glucuronidase and sulfatase) hydrolysis. We have shown that phase II metabolites constitute the major part of the known circulating efavirenz species in humans. The 8OH-EFV-glucuronide (gln) and 8OH-EFV-sulfate (identified for the first time) in humans were found to be 64- and 7-fold higher than the parent 8OH-EFV, respectively. In individuals (n = 67) genotyped for CYP2B6, 2A6, and CYP3A metabolic pathways, 8OH-EFV/EFV ratios in plasma were an index of CYP2B6 phenotypic activity (P < 0.0001), which was also reflected by phase II metabolites 8OH-EFV-glucuronide/EFV and 8OH-EFV-sulfate/EFV ratios. Neither EFV nor 8OH-EFV, nor any other considered metabolites in plasma were associated with an increased risk of central nervous system (CNS) toxicity. In CSF, 8OH-EFV levels were not influenced by CYP2B6 genotypes and did not predict CNS toxicity. The phase II metabolites 8OH-EFV-gln, 8OH-EFV-sulfate, and 7OH-EFV-gln were present in CSF at 2- to 9-fold higher concentrations than 8OH-EFV. The potential contribution of known and previously unreported EFV metabolites in CSF to the neuropsychological effects of efavirenz needs to be further examined in larger cohort studies.


Subject(s)
Anti-HIV Agents/pharmacokinetics , Benzoxazines/adverse effects , Benzoxazines/pharmacokinetics , HIV Infections/drug therapy , Metabolomics/methods , Reverse Transcriptase Inhibitors/pharmacokinetics , Tandem Mass Spectrometry , Alkynes , Anti-HIV Agents/adverse effects , Anti-HIV Agents/blood , Anti-HIV Agents/cerebrospinal fluid , Anti-HIV Agents/urine , Benzoxazines/blood , Benzoxazines/cerebrospinal fluid , Benzoxazines/urine , Cyclopropanes , Cytochrome P-450 CYP2A6/genetics , Cytochrome P-450 CYP2A6/metabolism , Cytochrome P-450 CYP2B6/genetics , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Genotype , Glucuronides/blood , Glucuronides/cerebrospinal fluid , Glucuronides/urine , HIV Infections/diagnosis , HIV Infections/metabolism , Humans , Hydroxylation , Metabolic Detoxication, Phase I , Metabolic Detoxication, Phase II , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/genetics , Neurotoxicity Syndromes/metabolism , Phenotype , Reverse Transcriptase Inhibitors/adverse effects , Reverse Transcriptase Inhibitors/blood , Reverse Transcriptase Inhibitors/cerebrospinal fluid , Reverse Transcriptase Inhibitors/urine , Risk Assessment , Sulfates/blood , Sulfates/cerebrospinal fluid , Sulfates/urine
3.
J Cereb Blood Flow Metab ; 31(3): 819-31, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20877385

ABSTRACT

Neuroimaging with diffusion-weighted imaging is routinely used for clinical diagnosis/prognosis. Its quantitative parameter, the apparent diffusion coefficient (ADC), is thought to reflect water mobility in brain tissues. After injury, reduced ADC values are thought to be secondary to decreases in the extracellular space caused by cell swelling. However, the physiological mechanisms associated with such changes remain uncertain. Aquaporins (AQPs) facilitate water diffusion through the plasma membrane and provide a unique opportunity to examine the molecular mechanisms underlying water mobility. Because of this critical role and the recognition that brain AQP4 is distributed within astrocytic cell membranes, we hypothesized that AQP4 contributes to the regulation of water diffusion and variations in its expression would alter ADC values in normal brain. Using RNA interference in the rodent brain, we acutely knocked down AQP4 expression and observed that a 27% AQP4-specific silencing induced a 50% decrease in ADC values, without modification of tissue histology. Our results demonstrate that ADC values in normal brain are modulated by astrocytic AQP4. These findings have major clinical relevance as they suggest that imaging changes seen in acute neurologic disorders such as stroke and trauma are in part due to changes in tissue AQP4 levels.


Subject(s)
Aquaporin 4/antagonists & inhibitors , Astrocytes/metabolism , Body Water/metabolism , Brain/metabolism , RNA Interference , Animals , Aquaporin 4/genetics , Diffusion , Embryo, Mammalian , Male , Mice , RNA, Small Interfering , Rats , Rats, Sprague-Dawley , Spheroids, Cellular , Tissue Culture Techniques , Transfection
4.
J Cereb Blood Flow Metab ; 29(2): 423-33, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18985050

ABSTRACT

Aquaporin 4 (AQP4) is a water channel involved in water movements across the cell membrane and is spatially organized on the cell surface in orthogonal array particles (OAPs). Its role in edema formation or resolution after stroke onset has been studied mainly at late time points. We have shown recently that its expression is rapidly induced after ischemia coinciding in time with an early swelling of the ischemic hemisphere. There are two isoforms of AQP4: AQP4-M1 and AQP4-M23. The ratio of these isoforms influences the size of the OAPs but the functional impact is not known. The role of the early induction of AQP4 is not yet known. Thrombin preconditioning in mice provides a useful model to study endogenous protective mechanisms. Using this model, we provide evidence for the first time that the early induction of AQP4 may contribute to limit the formation of edema and that the AQP4-M1 isoform is predominantly induced in the ischemic tissue at this time point. Although it prevents edema formation, the early induction of the AQP4 expression does not prevent the blood-brain barrier disruption, suggesting an effect limited to the prevention of edema formation possibly by removing of water from the tissue.


Subject(s)
Aquaporin 4/metabolism , Brain Ischemia/metabolism , Edema/metabolism , Edema/pathology , Animals , Aquaporin 4/genetics , Blood-Brain Barrier , Disease Models, Animal , Gene Expression Regulation , Male , Mice , Protein Isoforms/genetics , Protein Isoforms/metabolism , Stroke/metabolism , Thrombin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...