Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 12(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861794

ABSTRACT

A liposomes-in-hydrogel system as an advanced wound dressing for dermal delivery of curcumin was proposed for improved chronic wound therapy. Curcumin, a multitargeting poorly soluble active substance with known beneficial properties for improved wound healing, was incorporated in deformable liposomes to overcome its poor solubility. Chitosan hydrogel served as a vehicle providing superior wound healing properties. The novel system should assure sustained skin delivery of curcumin, and increase its retention at the skin site, utilizing both curcumin and chitosan to improve the therapy outcome. To optimize the properties of the formulation and determine the effect of the liposomal charge on the hydrogel properties, curcumin-containing deformable liposomes (DLs) with neutral (NDLs), cationic (CDLs), and anionic (ADLs) surface properties were incorporated in chitosan hydrogel. The charged DLs affected the hydrogel's hardness, cohesiveness, and adhesiveness. Importantly, the incorporation of DLs, regardless of their surface charge, in chitosan hydrogel did not decrease the system's bioadhesion to human skin. Stability testing revealed that the incorporation of CDLs in hydrogel preserved hydrogel´s bioadhesiveness to a higher degree than both NDLs and ADLs. In addition, CDLs-in-hydrogel enabled the most sustained skin penetration of curcumin. The proposed formulation should be further evaluated in a chronic wound model.

2.
Eur J Pharm Biopharm ; 144: 154-164, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31542438

ABSTRACT

Curcumin, a multi-targeting pharmacologically active compound, is a promising molecule for the treatment of skin inflammation and infection in chronic wounds. However, its hydrophobic nature remains to be a challenge in development of its pharmaceutical products, including dermatopharmaceuticals. Here we propose deformable liposomes (DLs) as a mean to overcome the curcumin limitations in skin treatment. We explored the properties and biological effects of curcumin containing DLs (curcumin-DLs) with varying surface charge by preparing the neutral (NDLs), cationic (CDLs) and anionic (ADLs) nanocarriers. The vesicles of mean diameter 200-300 nm incorporated high curcumin load mirroring the type of employed surfactant. Curcumin-CDLs provided the most sustained ex vivo penetration of curcumin through the full thickness human skin. Although the curcumin-CDLs were the most potent regarding the in vitro anti-inflammatory activity, all curcumin-DLs were superior to curcumin in solution (control). No cytotoxicity in human skin fibroblasts was detected. All DLs significantly inhibited bacterial Staphylococcus aureus and Streptococcus pyogenes growth in vitro. The curcumin-CDLs were found superior to other DLs. The incorporation of curcumin in DLs enabled both its sustained skin penetration and enhancement of its biological properties. Cationic nanocarriers enhanced the activities of curcumin to the greatest extent.


Subject(s)
Curcumin/administration & dosage , Curcumin/chemistry , Liposomes/chemistry , Skin/drug effects , Staphylococcal Skin Infections/drug therapy , Administration, Cutaneous , Cations/chemistry , Cell Survival/drug effects , Drug Carriers/chemistry , Fibroblasts/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Nanoparticles/chemistry , Particle Size , Skin/microbiology , Skin Absorption/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcal Skin Infections/microbiology , Staphylococcus aureus/drug effects , Streptococcal Infections/drug therapy , Streptococcal Infections/microbiology , Streptococcus pyogenes/drug effects , Surface-Active Agents/chemistry
3.
Eur J Pharm Sci ; 125: 163-171, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30300691

ABSTRACT

The topical administration of exogenous human epidermal growth factor (hEGF) is a promising approach for improved chronic wound therapy. To develop therapeutically superior hEGF formulation, we prepared hEGF-containing neutral (NDLs), cationic (CDLs) and anionic (ADLs) deformable liposomes (DLs), respectively, since it is expected that the liposomal surface charge can affect both the liposomal physicochemical properties, their skin penetration potential and therapeutic efficacy of liposome-associated drug. All prepared liposomes were of similar size (300-350 nm) with high hEGF load (~80% entrapment efficacy). Among the studied DLs, ADLs were found to be most promising for sustained release of hEGF, as assessed in vitro using the polyamide membrane. Ex vivo studies revealed that all DLs were excellent systems for skin therapy with hEGF and no penetration of hEGF through the full thickness human skin was detected. ADLs provided a depot exhibiting the highest hEGF retention onto the human skin surface. ADLs also revealed enhanced mitogenic activities in human fibroblasts compared to both NDLs and CDLs after 48 hrs treatment. Moreover, hEGF-containing ADLs significantly enhanced mitogenic activity in fibroblast as compared to activity of hEGF solution (positive control). Similar trends were observed in human keratinocytes after 24 hrs of treatment. We proved that the liposomal surface charge affects the therapeutic potential of hEGF-containing liposomes. hEGF-containing ADLs can be a promising nanosystem-based formulation for localized therapy of chronic wounds.


Subject(s)
Epidermal Growth Factor/administration & dosage , Epidermal Growth Factor/chemistry , Administration, Cutaneous , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Liberation , Female , Fibroblasts/drug effects , Humans , Keratinocytes/drug effects , Liposomes , Skin/metabolism , Skin Absorption , Surface Properties
4.
Int J Pharm ; 537(1-2): 213-222, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29288094

ABSTRACT

The mucus layer covering all mucosal surfaces in our body is the first barrier encountered by drugs before their potential absorption through epithelial tissues, and could thus affect the drugs' permeability and their effectiveness. Therefore, it is of key importance to have in vitro permeability models that can mimic this specific environment. For this purpose, the novel mucus phospholipid vesicle-based permeation assay (mucus-PVPA) has been developed and used for permeability screening of drugs and formulations. The model proved to be stable under the chosen conditions and demonstrated the ability to discriminate between compounds with different chemical structures and properties. Overall, a decrease in drug permeability was found in the presence of mucus on top of the PVPA barriers, as expected. Moreover, mucoadhesive (chitosan-coated) and mucopenetrating (PEGylated) liposomes were investigated in the newly developed model. The mucus-PVPA was able to distinguish between the different liposomal formulations, confirming the penetration potential of the tested formulations and the related drug permeability. The mucus-PVPA model appears to be a promising in vitro tool able to mimic the environment of mucosal tissues, and could therefore be used for further drug permeability screening and formulation development.


Subject(s)
Biological Assay/methods , Drug Evaluation, Preclinical/methods , Mucus/chemistry , Animals , Chemistry, Pharmaceutical/methods , Humans , Liposomes/chemistry , Permeability , Phospholipids/chemistry
5.
Eur J Pharm Biopharm ; 121: 14-23, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28916504

ABSTRACT

Phospholipid-based nanocarriers are attractive drug carriers for improved local skin therapy. In the present study, the recently developed isolated perfused human skin flap (IPHSF) model was used to directly compare the skin penetration enhancing potential of the three commonly used nanocarriers, namely conventional liposomes (CLs), deformable liposomes (DLs) and solid lipid nanoparticles (SLNs). Two fluorescent markers, calcein (hydrophilic) or rhodamine (lipophilic), were incorporated individually in the three nanosystems. The nanocarrier size ranged between 200 and 300nm; the surface charge and entrapment efficiency for both markers were dependent on the lipid composition and the employed surfactant. Both carrier-associated markers could not penetrate the full thickness human skin, confirming their suitability for dermal drug delivery. CLs exhibited higher retention of both markers on the skin surface compared to DLs and SLNs, indicating a depo formation. DLs and SLNs enabled the deeper penetration of the two markers into the skin layers. In vitro and ex vivo skin penetration studies performed on the cellophane membrane and full thickness pig/human skin, respectively, confirmed the findings. In conclusion, efficient dermal drug delivery can be achieved by optimization of a lipid nanocarrier on the suitable skin-mimicking model to assure system's accumulation in the targeted skin layer.


Subject(s)
Lipids/chemistry , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Skin Absorption/drug effects , Skin/metabolism , Adult , Aged , Animals , Drug Carriers/chemistry , Drug Delivery Systems/methods , Female , Fluoresceins/chemistry , Humans , Liposomes/chemistry , Middle Aged , Particle Size , Phospholipids/chemistry , Rhodamines/chemistry , Swine
6.
Eur J Pharm Sci ; 96: 334-341, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27720898

ABSTRACT

Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration.


Subject(s)
Perfusion/methods , Skin Absorption/physiology , Skin/metabolism , Surgical Flaps/physiology , Adult , Aged , Animals , Female , Fluoresceins/metabolism , Fluoresceins/pharmacology , Humans , Middle Aged , Organ Culture Techniques , Rhodamines/metabolism , Rhodamines/pharmacology , Skin/drug effects , Skin Absorption/drug effects , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...