ABSTRACT
Amylase and trypsin were purified from Tenebrio molitor midgut larvae and used to raise antibodies in a rabbit. A Western blot of T. molitor midgut homogenates, after sodium dodecyl sulfate-polyacrylamide gel electrophoresis using amylase and trypsin antisera, showed only bands co-migrating with the purified enzymes. The antisera were used to localize the enzymes by immunofluorescence and immunogold labeling. Amylase occurs in a few regularly disposed anterior midgut cells. Non-amylase-secreting anterior midgut cells are proposed to be water-absorbing cells based on morphology and dye movements. Amylase is found inside vesicles originating from Golgi areas that seem to fuse together before their release along with the now disorganized apical cytoplasm (apocrine secretion). Trypsin precursors are observed inside small vesicles near the apical plasma membrane of posterior midgut cells, suggesting an exocytic mechanism of secretion, followed by putative trypsin activation. Apocrine secretion is thought to be an adaptation to enhance the dispersion of secretory vesicle contents released from a water-absorbing epithelium, whereas exocytosis is an efficient secretory mechanism in a water-secreting epithelium.