Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9639, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671186

ABSTRACT

Systematic studies of numerical dynamo simulations reveal that the transition from dipole-dominated non-reversing fields to models that exhibit reversals occurs when inertial effects become strong enough. However, the inertial force is expected to play a secondary role in the force balance in Earth's outer core. Here we show that reversals in numerical dynamo models with heterogeneous outer boundary heat flux inferred from lower mantle seismic anomalies appear when the amplitude of heat flux heterogeneity is increased. The reversals are triggered at regions of large heat flux in which strong small-scale inertial forces are produced, while elsewhere inertial forces are substantially smaller. When the amplitude of heat flux heterogeneity is further increased so that in some regions sub-adiabatic conditions are reached, regional skin effects suppress small-scale magnetic fields and the tendency to reverse decreases. Our results reconcile the need for inertia for reversals with the theoretical expectation that the inertial force remains secondary in the force balance. Moreover, our results highlight a non-trivial non-monotonic behavior of the geodynamo in response to changes in the amplitude of the core-mantle boundary heat flux heterogeneity.

2.
Nat Commun ; 13(1): 1349, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35292642

ABSTRACT

Speleothems can provide high-quality continuous records of the direction and relative paleointensity of the geomagnetic field, combining high precision dating (with U-Th method) and rapid lock-in of their detrital magnetic particles during calcite precipitation. Paleomagnetic results for a mid-to-late Holocene stalagmite from Dona Benedita Cave in central Brazil encompass ~1900 years (3410 BP to 5310 BP, constrained by 12 U-Th ages) of paleomagnetic record from 58 samples (resolution of ~33 years). This dataset reveals angular variations of less than 0.06° yr-1 and a relatively steady paleointensity record (after calibration with geomagnetic field model) contrasting with the fast variations observed in younger speleothems from the same region under influence of the South Atlantic Anomaly. These results point to a quiescent period of the geomagnetic field during the mid-to-late Holocene in the area now comprised by the South Atlantic Anomaly, suggesting an intermittent or an absent behavior at the multi-millennial timescale.

3.
Proc Natl Acad Sci U S A ; 115(52): 13198-13203, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30530675

ABSTRACT

The diminishing strength of the Earth's magnetic dipole over recent millennia is accompanied by the increasing prominence of the geomagnetic South Atlantic Anomaly (SAA), which spreads over the South Atlantic Ocean and South America. The longevity of this feature at millennial timescales is elusive because of the scarcity of continuous geomagnetic data for the region. Here, we report a unique geomagnetic record for the last ∼1500 y that combines the data of two well-dated stalagmites from Pau d'Alho cave, located close to the present-day minimum of the anomaly in central South America. Magnetic directions and relative paleointensity data for both stalagmites are generally consistent and agree with historical data from the last 500 y. Before 1500 CE, the data adhere to the geomagnetic model ARCH3K.1, which is derived solely from archeomagnetic data. Our observations indicate rapid directional variations (>0.1°/y) from approximately 860 to 960 CE and approximately 1450 to 1750 CE. A similar pattern of rapid directional variation observed from South Africa precedes the South American record by 224 ± 50 y. These results confirm that fast geomagnetic field variations linked to the SAA are a recurrent feature in the region. We develop synthetic models of reversed magnetic flux patches at the core-mantle boundary and calculate their expression at the Earth's surface. The models that qualitatively resemble the observational data involve westward (and southward) migration of midlatitude patches, combined with their expansion and intensification.

SELECTION OF CITATIONS
SEARCH DETAIL
...