Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 110(4): 046603, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-25166184

ABSTRACT

We report on first-principles calculations of spin-dependent properties in graphene induced by its interaction with a nearby magnetic insulator (europium oxide, EuO). The magnetic proximity effect results in spin polarization of graphene π orbitals by up to 24%, together with a large exchange-splitting band gap of about 36 meV. The position of the Dirac cone is further shown to depend strongly on the graphene-EuO interlayer. These findings point toward the possible engineering of spin gating by the proximity effect at a relatively high temperature, which stands as a hallmark for future all-spin information processing technologies.

2.
Phys Rev Lett ; 108(22): 227003, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-23003643

ABSTRACT

We use electronic Raman scattering to study the model single-layer cuprate superconductor HgBa(2)CuO(4+δ). In an overdoped sample, we observe a pronounced amplitude enhancement of a high-energy peak related to two-magnon excitations in insulating cuprates upon cooling below the critical temperature T(c). This effect is accompanied by the appearance of the superconducting gap and a pairing peak above the gap in the Raman spectrum, and it can be understood as a hitherto-undetected feedback effect on the high-energy magnetic fluctuations due to the Cooper pairing interaction. This implies a direct involvement of the high-energy magnetic fluctuations in the pairing mechanism. All of these effects occur already above T(c) in two underdoped samples, demonstrating a related feedback mechanism associated with the pseudogap.

SELECTION OF CITATIONS
SEARCH DETAIL
...