Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1080087, 2023.
Article in English | MEDLINE | ID: mdl-36950349

ABSTRACT

Unreplicated field trials and genomic prediction are both used to enhance the efficiency in early selection stages of a hybrid maize breeding program. No results are available on the optimal experimental design when combining both approaches. Our objectives were to investigate the effect of the training set design on the accuracy of genomic prediction in unreplicated maize test crosses. We carried out a cross validation study on basis of an experimental data set consisting of 1436 hybrids evaluated for yield and moisture for which genotyping information of 461 SNP markers were available. Training set designs of different size, implementing within environment prediction, within year prediction, across year prediction, and combinations of data sources across years and environments were compared with respect to their prediction accuracy. Across year prediction did not reach prediction accuracies that are useful for genomic selection. Within year prediction across environments provided useful correlations between observed and predicted breeding values. The prediction accuracies did not improve when adding to the training set data from previous years. We conclude that using all data available from unreplicated tests of the current breeding cycle provides a good accuracy of predicting test crosses, whereas adding data from previous breeding cycles, in which the genotypes are less related to the tested material, has only limited value for increasing the prediction accuracy.

2.
Front Plant Sci ; 13: 735256, 2022.
Article in English | MEDLINE | ID: mdl-35528936

ABSTRACT

Genomic prediction has been established in breeding programs to predict the genotypic values of selection candidates without phenotypic data. First results in wheat showed that genomic predictions can also prove useful to select among material for which phenotypic data are available. In such a scenario, the selection candidates are evaluated with low intensity in the field. Genome-wide effects are estimated from the field data and are then used to predict the genotypic values of the selection candidates. The objectives of our simulation study were to investigate the correlations r(y, g) between genomic predictions y and genotypic values g and to compare these with the correlations r(p, g) between phenotypic values p and genotypic values g. We used data from a yield trial of 250 barley lines to estimate variance components and genome-wide effects. These parameters were used as basis for simulations. The simulations included multiple crossing schemes, population sizes, and varying sizes of the components of the masking variance. The genotypic values g of the selection candidates were obtained by genetic simulations, the phenotypic values p by simulating evaluation in the field, and the genomic predictions y by RR-BLUP effect estimation from the phenotypic values. The correlations r(y, g) were greater than the correlations r(p, g) for all investigated scenarios. We conclude that using genomic predictions for selection among candidates tested with low intensity in the field can proof useful for increasing the efficiency of barley breeding programs.

SELECTION OF CITATIONS
SEARCH DETAIL
...