Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36297836

ABSTRACT

The focus of this research is an investigation on the fatigue behaviour of unidirectional 3D-printed continuous carbon fibre-reinforced polymer (CFRP) tension straps with a polyamide matrix (PA12). Conventionally produced tension straps are becoming established components in the mechanical as well as the civil engineering sector, e.g., as rigging systems for sailing boats and cranes and-recently introduced-as network arch bridge hangers. All these structures are subjected to high fatigue loads, and although it is commonly reported that carbon fibre-reinforced polymers show excellent fatigue resistance, there is limited understanding of the behaviour of CFRP loop elements under such loads, especially in combination with fretting at the attachment points. Research on this topic was performed at Empa in the past decade on thermoset CFRP straps, but never before with 3D-printed continuous CFRP straps with a thermoplastic matrix. This paper examines an additive manufacturing and post-consolidation method for producing the straps and presents initial results on their fatigue performance, which show that the fatigue endurance limit of the investigated 3D-printed and post-consolidated CFRP strap design is acceptable, when compared to steel tendons. However, it is still 20% lower than conventionally produced CFRP straps using out-of-autoclave unidirectional carbon fibre prepregs. The reasons for these findings and potential future improvements are discussed.

2.
Dalton Trans ; 51(38): 14686-14699, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36098266

ABSTRACT

We report the controlled growth of biologically active compounds: gold nanoparticles (AuNPs) in various shapes, including their green synthesis, characterization, and studies of their applications towards biological, degradation and recycling. Using spectroscopic methods, studies on responsive binding mechanisms of AuNPs with biopolymers herring sperm deoxyribonucleic acid (hsDNA), bovine serum albumin (BSA), dyes degradation study, and exquisitely gold separation studies/recovery from nanowaste, COVID-19 testing kits, and pregnancy testing kits are discussed. The sensing ability of the AuNPs with biopolymers was investigated via various analytical techniques. The rate of degradation of various dyes in the presence and absence of AuNPs was studied by deploying stirring, IR, solar, and UV-Vis methods. AuNPs were found to be the most active cytotoxic agent against human breast cancer cell lines such as MCF-7 and MDAMB-468. Furthermore, an economical process for the recovery of gold traces from nanowaste, COVID-19 detection kits, and pregnancy testing kits was developed using inexpensive and eco-friendly α-cyclodextrin sugar. This method was found to be easy and safest in comparison with the universally accepted cyanidation process. In the future, small gold jewelry makers and related industries would benefit from the proposed gold-recycling process and it might contribute to their socio-economic growth. The methodologies proposed are also beneficial for trace-level forensic investigation.


Subject(s)
COVID-19 , Metal Nanoparticles , alpha-Cyclodextrins , COVID-19/diagnosis , COVID-19 Testing , Coloring Agents , Cytotoxins , DNA , Gold/chemistry , Humans , Male , Metal Nanoparticles/chemistry , Semen , Serum Albumin, Bovine/chemistry , Sugars
3.
RSC Adv ; 12(29): 18425-18430, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35799927

ABSTRACT

We developed a cost-effective and eco-friendly click biosynthesis of small molecule quercetin-gold quantum dots (QRT-AuQDs) involving quick conjugation using an ultrasonication method at ambient temperature by utilizing QRT and gold ions in the proportion of 0.1 : 1 (molar ratio). A comparatively very short amount of time (60 seconds) was required as compared to conventional procedures. The present biomimetics research relates to the isolation of bioactive QRT by the circularly spread silica gel layer technique (CSSGLT) and characterization (UV-Vis, FTIR, NMR and DSC analysis). Characterization of the synthesized QRT-AuQDs conjugated complex was carried out by UV-Vis, HR-TEM, DLS, zeta potential and X-ray diffraction. The main objective of the present work was to study the comparative anticancer activity of QRT and QRT-AuQDs on human lung cancer HOP-62 and leukemia K-562 cell lines. The results suggested that QRT-AuQDs showed potential for applications in anticancer treatment and were found to be a more cytotoxic agent in comparison to QRT, causing > 50% inhibition of cancer cells at the concentration < 10-7 M. Hence, small molecule conjugated QRT-AuQDs can be used as a promising material for biomedical, bioengineering and anti-infectives applications.

4.
Polymers (Basel) ; 13(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34641252

ABSTRACT

The fretting fatigue performance of laminated, unidirectional (UD), pin-loaded, carbon fibre-reinforced polymer (CFRP) straps that can be used as bridge hanger cables was investigated at a sustained service temperature of 60 °C. The aim of this paper is to elucidate the influence of the slightly elevated service temperature on the tensile fatigue performance of CFRP straps. First, steady state thermal tests at ambient temperature and at 60 °C are presented, in order to establish the behaviour of the straps at these temperatures. These results indicated that the static tensile performance of the straps is not affected by the increase in temperature. Subsequently, nine upper stress levels (USLs) between 650 and 1400 MPa were chosen in order to establish the S-N curve at 60 °C (frequency 10 Hz; R = 0.1) and a comparison with an existing S-N curve at ambient temperature was made. In general, the straps fatigue limit was slightly decreased by temperature, up to 750 MPa USL, while, for the higher USLs, the straps performed slightly better as compared with the S-N curve at ambient temperature.

5.
Materials (Basel) ; 14(8)2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33920364

ABSTRACT

The performance of pretensioned, laminated, unidirectional (UD), carbon fiber reinforced polymer (CFRP) straps, that can potentially be used for example as bridge deck suspender cables or prestressed shear reinforcements for reinforced concrete slabs and beams, was investigated at elevated temperatures. This paper aims to elucidate the effects of elevated temperature specifically on the tensile performance of pretensioned, pin-loaded straps. Two types of tests are presented: (1) steady state thermal and (2) transient state thermal. Eight steady-state target temperatures in the range of 24 °C to 600 °C were chosen, based on results from dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). Transient state thermal tests were performed at three sustained tensile load levels, namely 10, 15, and 20 kN, corresponding to 25%, 37%, and 50% of the ultimate tensile strength of the pin-loaded straps at ambient temperature. In general, the straps were able to retain about 50% of their ambient temperature ultimate tensile strength (UTS) at 365 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...