Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38293097

ABSTRACT

Tryptophan modulates disease activity and the composition of microbiota in the B6.Sle1.Sle2.Sle3 (TC) mouse model of lupus. To directly test the effect of tryptophan on the gut microbiome, we transplanted fecal samples from TC and B6 control mice into germ-free or antibiotic-treated non-autoimmune B6 mice that were fed with a high or low tryptophan diet. The recipient mice with TC microbiota and high tryptophan diet had higher levels of immune activation, autoantibody production and intestinal inflammation. A bloom of Ruminococcus gnavus (Rg), a bacterium associated with disease flares in lupus patients, only emerged in the recipients of TC microbiota fed with high tryptophan. Rg depletion in TC mice decreased autoantibody production and increased the frequency of regulatory T cells. Conversely, TC mice colonized with Rg showed higher autoimmune activation. Overall, these results suggest that the interplay of genetic and tryptophan can influence the pathogenesis of lupus through the gut microbiota.

2.
Front Immunol ; 14: 1187145, 2023.
Article in English | MEDLINE | ID: mdl-37483626

ABSTRACT

Background: Mounting evidence suggests that increased gut permeability, or leaky gut, and the resulting translocation of pathobionts or their metabolites contributes to the pathogenesis of Systemic Lupus Erythematosus. However, the mechanisms underlying the induction of gut leakage remain unclear. In this study, we examined the effect of a treatment with a TLR7/8 agonist in the B6.Sle1.Sle2.Sle3 triple congenic (TC) mouse, a spontaneous mouse model of lupus without gut leakage. Materials and methods: Lupus-prone mice (TC), TC.Rag1-/- mice that lack B and T cells, and congenic B6 healthy controls were treated with R848. Gut barrier integrity was assessed by measuring FITC-dextran in the serum following oral gavage. Claudin-1 and PECAM1 expression as well as the extent of CD45+ immune cells, B220+ B cells, CD3+ T cells and CD11b+ myeloid cells were measured in the ileum by immunofluorescence. NKp46+ cells were measured in the ileum and colon by immunofluorescence. Immune cells in the ileum were also analyzed by flow cytometry. Results: R848 decreased gut barrier integrity in TC but not in congenic control B6 mice. Immunofluorescence staining of the ileum showed a reduced expression of the tight junction protein Claudin-1, endothelial cell tight junction PECAM1, as well as an increased infiltration of immune cells, including B cells and CD11b+ cells, in R848-treated TC as compared to untreated control mice. However, NKp46+ cells which play critical role in maintaining gut barrier integrity, had a lower frequency in treated TC mice. Flow cytometry showed an increased frequency of plasma cells, dendritic cells and macrophages along with a decreased frequency of NK cells in R848 treated TC mice lamina propria. In addition, we showed that the R848 treatment did not induce gut leakage in TC.Rag1-/- mice that lack mature T and B cells. Conclusions: These results demonstrate that TLR7/8 activation induces a leaky gut in lupus-prone mice, which is mediated by adaptive immune responses. TLR7/8 activation is however not sufficient to breach gut barrier integrity in non-autoimmune mice.


Subject(s)
Toll-Like Receptor 7 , Toll-Like Receptor 8 , Mice , Animals , Claudin-1 , Mice, Congenic , Mice, Inbred Strains , Homeodomain Proteins
3.
J Immunol ; 210(4): 377-388, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36602759

ABSTRACT

The activation of lymphocytes in patients with lupus and in mouse models of the disease is coupled with an increased cellular metabolism in which glucose plays a major role. The pharmacological inhibition of glycolysis with 2-deoxy-d-glucose (2DG) reversed the expansion of follicular helper CD4+ T cells and germinal center B cells in lupus-prone mice, as well as the production of autoantibodies. The response of foreign Ags was however not affected by 2DG in these mice, suggesting that B and CD4+ T cell activation by autoantigens is uniquely sensitive to glycolysis. In this study, we tested this hypothesis with monoclonal B cells and CD4+ T cells specific for lupus-relevant autoantigens. AM14 Vκ8R (AM14) transgenic B cells are activated by IgG2a/chromatin immune complexes and they can receive cognate help from chromatin-specific 13C2 CD4+ T cells. We showed that activation of AM14 B cells by their cognate Ag PL2-3 induced glycolysis, and that the inhibition of glycolysis reduced their activation and differentiation into Ab-forming cells, in the absence or presence of T cell help. The dependency of autoreactive B cells on glycolysis is in sharp contrast with the previously reported dependency of 4-hydroxy-3-nitrophenyl acetyl-specific B cells on fatty acid oxidation. Contrary to AM14 B cells, the activation and differentiation of 13C2 T cells into follicular helper CD4+ T cells was not altered by 2DG, which differs from polyclonal CD4+ T cells from lupus-prone mice. These results further define the role of glycolysis in the production of lupus autoantibodies and demonstrate the need to evaluate the metabolic requirements of Ag-specific B and T cells.


Subject(s)
CD4-Positive T-Lymphocytes , Lupus Erythematosus, Systemic , Lymphoma, B-Cell , Animals , Mice , Autoantibodies , Autoantigens/metabolism , Chromatin/metabolism , Glucose/metabolism , Lupus Erythematosus, Systemic/metabolism , Lymphocyte Activation , T-Lymphocytes, Helper-Inducer
4.
Front Immunol ; 13: 914468, 2022.
Article in English | MEDLINE | ID: mdl-35860280

ABSTRACT

We report a novel model of lupus-associated cardiovascular pathology accelerated by the TLR7 agonist R848 in lupus-prone B6.Sle1.Sle2.Sle3 (TC) mice. R848-treated TC mice but not non-autoimmune C57BL/6 (B6) controls developed microvascular inflammation and myocytolysis with intracellular vacuolization. This histopathology was similar to antibody-mediated rejection after heart transplant, although it did not involve complement. The TC or B6 recipients of serum or splenocytes from R848-treated TC mice developed a reactive cardiomyocyte hypertrophy, which also presents spontaneously in old TC mice as well as in TC.Rag-/- mice that lack B and T cells. Each of these cardiovascular lesions correspond to abnormalities that have been reported in lupus patients. Lymphoid and non-lymphoid immune cells as well as soluble factors contribute to lupus-associated cardiovascular lesions in TC mice, which can now be dissected using this model with and without R848 treatment.


Subject(s)
Membrane Glycoproteins/metabolism , T-Lymphocytes , Toll-Like Receptor 7/metabolism , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL
5.
Endocrinology ; 163(7)2022 07 01.
Article in English | MEDLINE | ID: mdl-35560001

ABSTRACT

A high prevalence of metabolic syndrome (MetS) has been reported in multiple cohorts of systemic lupus erythematosus (SLE) patients, most likely as one of the consequences of autoimmune pathogenesis. Although MetS has been associated with inflammation, its consequences on the lupus immune system and on disease manifestations are largely unknown. The metabolism of immune cells is altered and overactivated in mouse models as well as in patients with SLE, and several metabolic inhibitors have shown therapeutic benefits. Here we review recent studies reporting these findings, as well as the effect of dietary interventions in clinical and preclinical studies of SLE. We also explore potential causal links between systemic and immunometabolism in the context of lupus, and the knowledge gap that needs to be addressed.


Subject(s)
Lupus Erythematosus, Systemic , Metabolic Syndrome , Animals , Disease Models, Animal , Humans , Inflammation/pathology , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/pathology , Metabolic Syndrome/complications , Mice , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...