Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 47(43): 15391-15398, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30306985

ABSTRACT

The titanium complex [TiCp*(thiosal)(thiosalH)] (1) has been synthesised by reaction of [TiCp*Me3], Cp* = η5-C5Me5, with thiosalicylic acid (H2thiosal). Complex 1 reacts with [M(µ-OH)(COD)]2 (M = Rh, Ir) to yield the corresponding early-late heterobimetallic complexes [TiCp*(thiosal)2M(COD)] (M = Rh (2); Ir (3)). Carbon monoxide replaces the COD ligand in 2 and 3 leading to the respective dicarbonyl complexes [TiCp*(thiosal)2M(CO)2] (M = Rh (4); Ir (5)). Compound 4 reacts with PPh3 to yield the monocarbonyl derivative [TiCp*(thiosal)2Rh(CO)(PPh3)] (6). The reaction of compound 1 with LinBu yields the tetrametallic complex [{TiCp*(thiosal)2Li}2(THF)3(H2O)] (7). Compound 7 reacts with [RuCp*Cl(COD)] yielding the heterometallic complex [TiCp*(thiosal)2RuCp*] (8). The molecular structures of compounds 4, 5 and 7 have been studied by X-ray diffraction. From cyclic voltammetric (CV) and square wave voltammetric (SWV) experiments, we observed that attachment of the titanium moiety of precursor 1 to a late transition metal moiety through the sulfur atoms has a significant influence on the reduction behaviour of the Ti(iv) metal centre. Thus, monometallic 1 exhibits an irreversible reduction process at -1.15 V vs. SCE, whereas the CVs of heterobimetallic compounds 2-6 are characterized by the reversible or quasi-reversible one-electron reduction of the Ti(iv)/Ti(iii) system, suggesting a significant stabilization of the Ti(iii) reduced species. Likewise, substitution of the M(COD) diolefin fragment in 2 and 3 by the M(CO)2 carbonyl-containing moiety (in compounds 4 and 5) leads to a significant anodic shift in the titanium E1/2 reduction redox potentials.

2.
Inorg Chem ; 48(10): 4491-6, 2009 May 18.
Article in English | MEDLINE | ID: mdl-19351135

ABSTRACT

The performance of several palladium precatalysts, namely, palladium(II) acetate, palladium(0) nanoparticles encapsulated into poly(amidoamine) (PAMAM) dendrimers (Pd DENs), and palladium(II)-PAMAM complexes, in the Stille reaction between trichloro(phenyl)stannane and iodoarenes in water is compared. The reactivity of Pd DENs is similar or inferior to that of palladium(II) acetate, although the presence of the dendrimer suppresses the formation of homocoupling products and allows catalyst recycling. It is suggested that the reaction catalyzed by Pd DENs occurs via palladium species which are leached from the nanoparticle but which remain coordinated to the dendritic macromolecule.

3.
Dalton Trans ; (8): 871-7, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17297515

ABSTRACT

Reaction of [Cp*TiMe3] with O(SiPh2OH)2 yields the titanium siloxide derivative [Cp*TiMe{(OSiPh2)2O}]. Complex reacts with H2O to yield the corresponding oxo-titanium derivative [(Cp*Ti{(OSiPh2)2O})2(micro-O)]. The molecular structure of complex has been established by X-ray diffraction. Complex reacts with triphenylsilanol to give the asymmetric titanium siloxide [Cp*Ti(OSiPh3){(OSiPh2)2O}]. Treatment of the dinuclear titanium compound [(Cp*TiCl2)2(micro-O)] with an equimolar amount of O(SiPh2OH)2 yields complex [(Cp*TiCl)2{micro-(OSiPh2)2O}(micro-O)] in which the disiloxide moiety is bridging two titanium atoms. The structure of has been determined by X-ray diffraction. Reaction of [Cp*TiMe3] with HOSiPh3 yields the titanium triphenylsiloxide [Cp*TiMe2(OSiPh3)]. Complex reacts with water to yield [{Cp*TiMe(OSiPh3)}2(micro-O)]. The triflate compound [Cp*Ti(OSiPh3)2(OTf)] can be prepared by reaction of with HOTf and triphenylsilanol. We have tested the catalytic activity of some of the complexes in the epoxidation of cyclohexene.

4.
Chemistry ; 13(10): 2831-6, 2007.
Article in English | MEDLINE | ID: mdl-17171740

ABSTRACT

The heterometallic complex [TiCp*(O(2)Bz)(2)AlMe(2)] (2) has been synthesised by reaction of [TiCp*(O(2)Bz)(OBzOH)] (1) with AlMe(3) (Cp*=eta(5)-C(5)Me(5); Bz=benzyl). Complex 1 reacts with HOTf to yield the cationic derivative [TiCp*(OBzOH)(2)]OTf (3) (HOTf=HSO(3)CF(3)). Compound 3 reacts with [{M(mu-OH)(cod)}(2)] (M=Rh, Ir; cod=cyclooctadiene) to render the early-late heterometallic complexes [TiCp*(O(2)Bz)(2){M(cod)}(2)]OTf (M=Rh (4); Ir (5)). The molecular structure of complex 4 has been established by single-crystal X-ray diffraction studies.

5.
Dalton Trans ; (22): 2683-90, 2006 Jun 14.
Article in English | MEDLINE | ID: mdl-16804580

ABSTRACT

The new titanium dicarboxylate complex Cp*TiMe(OOC)2py (2) [Cp*=eta5-C5Me5; (OOC)2py = 2,6-pyridinedicarboxylate] has been synthesized. The reaction of complex 2 with water renders [Cp*Ti(OOC)2py]2O (3). The molecular structure of 3 has been studied by X-ray diffraction methods. Complex 2 reacts with isocyanides to yield the respective iminoacyl derivatives Cp*Ti(eta2-MeCNR)(OOC)2py [R=tBu (4), 2,6-dimethylphenyl (xylyl) (5)]. The molecular structure of complex4 has been established by X-ray diffraction. Compound 2 has been employed as a new building block for the preparation of new early-late heterometallic compounds; it reacts with [M(mu-OH)(COD)]2 (M = Rh, Ir) to give the corresponding tetranuclear metallomacrocycle derivatives [Cp*Ti{(OOC)(2)py}(mu-O)M(COD)]2 [M = Rh (6); Ir (7)]. The molecular structure of 6 has been established by X-ray diffraction.

6.
Langmuir ; 22(7): 3131-7, 2006 Mar 28.
Article in English | MEDLINE | ID: mdl-16548568

ABSTRACT

Several silylated- and nonsilylated Co/SiO2 catalysts have been prepared by reaction of the surface silanol groups with hexamethyldisilazane (HMDS). These samples have been characterized by means of N2 adsorption isotherms, solid-state nuclear magnetic resonance (29Si and 1H), X-ray photoelectron spectroscopy, thermogravimetric analysis, and diffuse reflectance IR spectroscopy. We have focused on the study of the silylated surface stability at high temperatures and in different atmospheres. The characterization techniques have shown that silica silylation after cobalt impregnation leads to a silylated SiO2 surface composed of hydrophobic Si-(CH3)3 species highly stable up to 600-650 K in both oxidizing and reducing atmospheres. However, X-ray diffraction and temperature-programmed reduction have shown that the hydrophobic nature of the silica surface does not affect the metal dispersion and its reducibility. The materials prepared in this way have been tested as catalysts for the Fischer-Tropsch synthesis reaction. The CO conversion reaction rate increased over the silylated catalyst, probably as a consequence of the higher number of available active sites because water adsorption over the catalyst surface is impeded. However, catalyst deactivation was not affected by the hydrophobic nature of the support, suggesting that carbon deposition is the more probable mechanism of cobalt-based catalyst deactivation during the Fischer-Tropsch synthesis.

7.
Dalton Trans ; (5): 938-44, 2005 Mar 07.
Article in English | MEDLINE | ID: mdl-15726148

ABSTRACT

The reaction of [Rh(micro-Cl)(COD)]2 with 4,6-dimethyl-pyrimidinethiolate (Me2-pymt) and subsequent substitution of COD by CO yields [Rh(Me2-pymt)(CO)2]. The stacking pattern found in this compound is in contradiction with previously studied comparable square-planar complexes of type d8-[M(chelate)(monodentate)2] in which each ligand has different pi-acidic character. A theoretical study of the intermolecular interactions and conformation of the title compound has been carried out, combining semi-empirical band calculations on the real chains and ab initio(MP2 level) calculations on a model dimer. The combination of electronic and steric effects determines the rotation of the successive monomers and the deviation from linearity of the one-dimensional stacks. Its behaviour in solution is also special, developing a blue colour and forming micelles, when adding water to acetone solutions.

8.
Chemistry ; 9(3): 671-7, 2003 Feb 03.
Article in English | MEDLINE | ID: mdl-12569459

ABSTRACT

Titanium complexes with chelating alkoxide ligands [TiCp*(O(2)Bz)(OBzOH)] (1) and [TiCp*(Me)((OCH(2))(2)Py)] (2) were synthesised by reaction of [TiCp*Me(3)] (Cp*=eta(5)-C(5)Me(5)) with 2-hydroxybenzyl alcohol ((HO)(2)Bz) and 2,6-pyridinedimethanol ((HOCH(2))(2)Py), respectively. Complex 1 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) to yield the early-late heterobimetallic complexes [TiCp*(O(2)Bz)(2)M(cod)] [M=Rh (3), Ir (4)]. Carbon monoxide readily replaces the COD ligand in 3 to give the rhodium dicarbonyl derivative [TiCp*(O(2)Bz)(2)Rh(CO)(2)] (5). Compound 2 reacts with [(M(mu-OH)(cod))(2)] (M=Rh, Ir) with protonolysis of a Tibond;Me bond to give [TiCp*((OCH(2))(2)Py)(mu-O)M(cod)] [M=Rh (6), Ir (7)]. The molecular structures of complexes 3, 5 and 7 were established by single-crystal X-ray diffraction studies.

10.
Angew Chem Int Ed Engl ; 40(15): 2884-2887, 2001 Aug 03.
Article in English | MEDLINE | ID: mdl-29712002

ABSTRACT

Rhodium supported on titania-silica is modeled by 1, which was obtained from [{Cp*TiMe(µ-O2 SiPh2 )}2 ] (2) and [{Rh(OH)(cod)}2 ]. Complex 2 and its triply bridged derivative [Cp*Ti(µ-O2 SiPh2 )3 TiCp*] (3) can be envisaged as molecular models of titania-silica systems. Compounds 1-3 could potentially provide insights into the nature of the catalytically active sites in these systems; cod=1,5-cycloctadiene, Cp*=η5 -C5 Me5 .

SELECTION OF CITATIONS
SEARCH DETAIL
...