Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Aging Cell ; 21(8): e13667, 2022 08.
Article in English | MEDLINE | ID: mdl-35811457

ABSTRACT

Dysfunctional adipocyte precursors have emerged as key determinants for obesity- and aging-related inflammation, but the mechanistic basis remains poorly understood. Here, we explored the dysfunctional adipose tissue of elderly and obese individuals focusing on the metabolic and inflammatory state of human adipose-derived mesenchymal stromal cells (hASCs), and on sirtuins, which link metabolism and inflammation. Both obesity and aging impaired the differentiation potential of hASCs but had a different impact on their proliferative capacity. hASCs from elderly individuals (≥65 years) showed an upregulation of glycolysis-related genes, which was accompanied by increased lactate secretion and glycogen storage, a phenotype that was exaggerated by obesity. Multiplex protein profiling revealed that the metabolic switch to glycogenesis was associated with a pro-inflammatory secretome concomitant with a decrease in the protein expression of SIRT1 and SIRT6. siRNA-mediated knockdown of SIRT1 and SIRT6 in hASCs from lean adults increased the expression of pro-inflammatory and glycolysis-related markers, and enforced glycogen deposition by overexpression of protein targeting to glycogen (PTG) led to a downregulation of SIRT1/6 protein levels, mimicking the inflammatory state of hASCs from elderly subjects. Overall, our data point to a glycogen-SIRT1/6 signaling axis as a driver of age-related inflammation in adipocyte precursors.


Subject(s)
Sirtuin 1 , Sirtuins , Adipocytes/metabolism , Adipose Tissue/metabolism , Adult , Aged , Glycogen/metabolism , Humans , Inflammation/metabolism , Obesity/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuins/genetics , Sirtuins/metabolism
2.
Adv Lab Med ; 2(2): 237-252, 2021 May.
Article in English, Spanish | MEDLINE | ID: mdl-37363333

ABSTRACT

Objectives: Coronavirus disease 2019 (COVID-19) is widely spreading and represents a critical threat to global health. In the fight against this pandemic, provincial hospitals urgently need rapid diagnostic of COVID-19 infected patients to avoid collapsing of emergency units. However, the high demand of patients with severe acute respiratory symptoms limits the fast delivery of results by the gold standard method reverse transcription-polymerase chain reaction real time (rRT-PCR) for the identification of COVID-19 positive pneumonia. The principal aim is to find other useful laboratory indicators to assist rRT-PCR tests and to help controlling of this outbreak. Methods: Blood, coagulation and inflammatory parameters were collected from a total of 309 patients classified as negative (128) and positive (181) rRT-PCR test groups. Patients were classified as positive by molecular diagnostic test. Results: Leukocyte count (WBC), neutrophils count, lymphocytes count and lactate dehydrogenase (LDH) were statistically different between both groups of patients. The use of LDH/WBC ratio increases the diagnostic performance with the best area under the curve (0.783), sensibility (82%) and the best percentage (80.5%) of correctly identified COVID-19 positive patients. Conclusions: The combination of predictive LDH/WBC ratio with clinical illness features could help in medical management of patients and improve the technical resources of hospitals, especially in a critical scenario with a large shortage of medical equipment and lack of reagents for performing rRT-PCR.

3.
Diabetes Care ; 43(10): 2581-2587, 2020 10.
Article in English | MEDLINE | ID: mdl-32737141

ABSTRACT

OBJECTIVE: To explore the meal response of circulating succinate in patients with obesity and type 2 diabetes undergoing bariatric surgery and to examine the role of gastrointestinal glucose sensing in succinate dynamics in healthy subjects. RESEARCH DESIGN AND METHODS: Cohort I comprised 45 patients with morbid obesity and type 2 diabetes (BMI 39.4 ± 1.9 kg/m2) undergoing metabolic surgery. Cohort II was a confirmatory cohort of 13 patients (BMI 39.3 ± 1.4 kg/m2) undergoing gastric bypass surgery. Cohort III comprised 15 healthy subjects (BMI 26.4 ± 0.5 kg/m2). Cohorts I and II completed a 2-h mixed-meal tolerance test (MTT) before the intervention and at 1 year of follow-up, and cohort II also completed a 3-h lipid test (LT). Cohort III underwent a 3-h oral glucose tolerance test (OGTT) and an isoglycemic intravenous glucose infusion (IIGI) study. RESULTS: In cohort I, succinate response to MTT at follow-up was greater than before the intervention (P < 0.0001). This response was confirmed in cohort II with a greater increase after 1 year of surgery (P = 0.009). By contrast, LT did not elicit a succinate response. Changes in succinate response were associated with changes in the area under the curve of glucose (r = 0.417, P < 0.0001) and insulin (r = 0.204, P = 0.002). In cohort III, glycemia, per se, stimulated a plasma succinate response (P = 0.0004), but its response was greater in the OGTT (P = 0.02; OGTT versus IIGI). CONCLUSIONS: The meal-related response of circulating succinate in patients with obesity and type 2 diabetes is recovered after metabolic surgery.


Subject(s)
Bariatric Surgery , Diabetes Mellitus, Type 2/surgery , Eating/physiology , Obesity, Morbid/surgery , Succinic Acid/blood , Adult , Aged , Blood Glucose/metabolism , Cohort Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diagnostic Techniques, Endocrine/standards , Female , Follow-Up Studies , Glucose Tolerance Test , Humans , Insulin/blood , Male , Meals , Middle Aged , Obesity, Morbid/blood , Obesity, Morbid/complications , Reference Values , Succinic Acid/standards , Young Adult
4.
J Clin Med ; 9(8)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751800

ABSTRACT

Crohn's disease (CD) is characterized by compromised immune tolerance to the intestinal commensal microbiota, intestinal barrier inflammation, and hyperplasia of creeping fat (CF) and mesenteric adipose tissue (AT), which seems to be directly related to disease activity. Gut microbiota dysbiosis might be a determining factor in CD etiology, manifesting as a low microbial diversity and a high abundance of potentially pathogenic bacteria. We tested the hypothesis that CF is a reservoir of bacteria through 16S-rRNA sequencing of several AT depots of patients with active and inactive disease and controls. We found a microbiome signature within CF and mesenteric AT from patients, but not in subcutaneous fat. We failed to detect bacterial DNA in any fat depot of controls. Proteobacteria was the most abundant phylum in both CF and mesenteric AT, and positively correlated with fecal calprotectin/C-reactive protein. Notably, the clinical status of patients seemed to be related to the microbiome signature, as those with the inactive disease showed a reduction in the abundance of pathogenic bacteria. Predictive functional profiling revealed many metabolic pathways including lipopolysaccharide biosynthesis and sulfur metabolism overrepresented in active CD relative to that in inactive CD. Our findings demonstrate that microbiota dysbiosis associated with CD pathophysiology is reflected in AT and might contribute to disease severity.

5.
Clin Epigenetics ; 12(1): 53, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32252817

ABSTRACT

BACKGROUND: Crohn's disease (CD) is characterized by persistent inflammation and ulceration of the small or large bowel, and expansion of mesenteric adipose tissue, termed creeping fat (CF). We previously demonstrated that human adipose-derived stem cells (hASCs) from CF of patients with CD exhibit dysfunctional phenotypes, including a pro-inflammatory profile, high phagocytic capacity, and weak immunosuppressive properties. Importantly, these phenotypes persist in patients in remission and are found in all adipose depots explored including subcutaneous fat. We hypothesized that changes in hASCs are a consequence of epigenetic modifications. METHODS: We applied epigenome-wide profiling with a methylation array (Illumina EPIC/850k array) and gene expression analysis to explore the impact of CD on the methylation signature of hASCs isolated from the subcutaneous fat of patients with CD and healthy controls (n = 7 and 5, respectively; cohort I). Differentially methylated positions (p value cutoff < 1 × 10-4 and ten or more DMPs per gene) and regions (inclusion threshold 0.2, p value cutoff < 1 × 10-2 and more than 2 DMRs per gene) were identified using dmpfinder and Bumphunter (minfi), respectively. Changes in the expression of differentially methylated genes in hASCs were validated in a second cohort (n = 10/10 inactive and active CD and 10 controls; including patients from cohort I) and also in peripheral blood mononuclear cells (PBMCs) of patients with active/inactive CD and of healthy controls (cohort III; n = 30 independent subjects). RESULTS: We found a distinct DNA methylation landscape in hASCs from patients with CD, leading to changes in the expression of differentially methylated genes involved in immune response, metabolic, cell differentiation, and development processes. Notably, the expression of several of these genes in hASCs and PBMCs such as tumor necrosis factor alpha (TNFA) and PR domain zinc finger protein 16 (PRDM16) were not restored to normal (healthy) levels after disease remission. CONCLUSIONS: hASCs of patients with CD exhibit a unique DNA methylation and gene expression profile, but the expression of several genes are only partially restored in patients with inactive CD, both in hASCs and PBMCs. Understanding how CD shapes the functionality of hASCs is critical for investigating the complex pathophysiology of this disease, as well as for the success of cell-based therapies. Human adipose-stem cells isolated from subcutaneous fat of patients with Crohn's disease exhibit an altered DNA methylation pattern and gene expression profile compared with those isolated from healthy individuals, with immune system, cell differentiation, metabolic and development processes identified as the main pathways affected. Interestingly, the gene expression of several genes involved in these pathways is only partially restored to control levels in patients with inactive Crohn's disease, both in human adipose-stem cells and peripheral blood mononuclear cells. Understanding how Crohn's disease shapes the functionality of human adipose-stem cells is critical for investigating the complex pathophysiology of this disease, as well as for the success of cell-based therapies.


Subject(s)
Adipose Tissue/chemistry , Crohn Disease/genetics , DNA Methylation , Epigenomics/methods , Gene Regulatory Networks , Case-Control Studies , Cell Culture Techniques , Epigenesis, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , Oligonucleotide Array Sequence Analysis , Stem Cells/chemistry
6.
J Med Microbiol ; 66(12): 1736-1743, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29120301

ABSTRACT

PURPOSE: The genus Arcobacter includes bacteria that are considered emergent pathogens because they can produce infections in humans and animals. The most common symptoms are bloody and non-bloody persistent diarrhea but cases with abdominal cramps without diarrhea or asymptomatic cases have also been described as well as cases with bacteremia. The objective was to characterize Arcobacter clinical strains isolated from the faeces of patients from three Spanish hospitals. METHODOLOGY: We have characterized 28 clinical strains (27 of A. butzleri and one of A. cryaerophilus) isolated from faeces, analysing their epidemiological relationship using the multilocus sequence typing (MLST) approach and screening them for their antibiotic susceptibility and for the presence of virulence genes.Results/Key findings. Typing results showed that only one of the 28 identified sequence types (i.e. ST 2) was already present in the MLST database. The other 27 STs constituted new records because they included new alleles for five of the seven genes or new combinations of known alleles of the seven genes. All strains were positive for the ciaB virulence gene and sensitive to tetracycline. However, 7.4 % of the A. butzleri and A. cryaerophilus strains showed resistance to ciprofloxacin. CONCLUSION: The fact that epidemiological unrelated strains show the same ST indicates that other techniques with higher resolution should be developed to effectively recognize the infection source. Resistance to ciprofloxacin, one of the antibiotics recommended for the treatment of Arcobacter intestinal infections, demonstrated in 10.7 % of the strains, indicates the importance of selecting the most appropriate effective treatment.


Subject(s)
Arcobacter/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Feces/microbiology , Alleles , Anti-Infective Agents , Arcobacter/classification , Arcobacter/isolation & purification , Ciprofloxacin/pharmacology , DNA, Bacterial/isolation & purification , Humans , Multilocus Sequence Typing , Tetracycline/pharmacology , Virulence Factors/genetics
7.
Stem Cell Reports ; 9(4): 1109-1123, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28966116

ABSTRACT

Crohn's disease (CD) is characterized by the expansion of mesenteric fat, also known as "creeping fat." We explored the plasticity and immune properties of adipose-derived stem cells (ASCs) in the context of CD as potential key players in the development of creeping fat. Mesenteric CD-derived ASCs presented a more proliferative, inflammatory, invasive, and phagocytic phenotype than equivalent cells from healthy donors, irrespective of the clinical stage. Remarkably, ASCs from the subcutaneous depot of patients with CD also showed an activated immune response that was associated with a reduction in their immunosuppressive properties. The invasive phenotype of mesenteric CD ASCs was governed by an inflammasome-mediated inflammatory state since blocking inflammasome signaling, mainly the secretion of interleukin-1ß, reversed this characteristic. Thus, CD alters the biological functions of ASCs as adipocyte precursors, but also their immune properties. Selection of ASCs with the best immunomodulatory properties is advocated for the success of cell-based therapies.


Subject(s)
Adipose Tissue/cytology , Crohn Disease/immunology , Crohn Disease/metabolism , Inflammasomes/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipogenesis/genetics , Adult , Cell Differentiation/genetics , Cell Proliferation , Cytokines/metabolism , Female , Glycolysis , Humans , Immunomodulation , Inflammation Mediators/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Middle Aged , Phagocytosis/immunology , Phenotype , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
8.
Cell Death Dis ; 8(5): e2802, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28518147

ABSTRACT

Adipose tissue (AT) has a central role in obesity-related metabolic imbalance through the dysregulated production of cytokines and adipokines. In addition to its known risk for cardiovascular disease and diabetes, obesity is also a major risk for cancer. We investigated the impact of obesity for the expression of survivin, an antiapoptotic protein upregulated by adipokines and a diagnostic biomarker of tumor onset and recurrence. In a cross-sectional study of 111 subjects classified by body mass index, circulating levels of survivin and gene expression in subcutaneous AT were significantly higher in obese patients and positively correlated with leptin. Within AT, survivin was primarily detected in human adipocyte-derived stem cells (hASCs), the adipocyte precursors that determine AT expansion. Remarkably, survivin expression was significantly higher in hASCs isolated from obese patients that from lean controls and was increased by proinflammatory M1 macrophage soluble factors including IL-1ß. Analysis of survivin expression in hASCs revealed a complex regulation including epigenetic modifications and protein stability. Surprisingly, obese hASCs showed survivin promoter hypermethylation that correlated with a significant decrease in its mRNA levels. Nonetheless, a lower level of mir-203, which inhibits survivin protein translation, and higher protein stability, was found in obese hASCs compared with their lean counterparts. We discovered that survivin levels determine the susceptibility of hASCs to apoptotic stimuli (including leptin and hypoxia). Accordingly, hASCs from an obese setting were protected from apoptosis. Collectively, these data shed new light on the molecular mechanisms governing AT expansion in obesity through promotion of hASCs that are resistant to apoptosis, and point to survivin as a potential new molecular player in the communication between AT and tumor cells. Thus, inhibition of apoptosis targeting survivin might represent an effective strategy for both obesity and cancer therapy.


Subject(s)
Adipose Tissue/pathology , Apoptosis , Disease Progression , Inhibitor of Apoptosis Proteins/metabolism , Obesity/metabolism , Stem Cells/pathology , Adipose Tissue/metabolism , Adult , Anthropometry , Epigenesis, Genetic , Female , Humans , Inflammation/pathology , Inhibitor of Apoptosis Proteins/blood , Inhibitor of Apoptosis Proteins/genetics , Male , Middle Aged , Protein Biosynthesis , Survivin , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...