Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35590836

ABSTRACT

Induction machines (IMs) are a critical component of many industrial processes, and their failure can cause large economic losses. Condition-based maintenance systems (CBMs) that are capable of detecting their failures at an incipient stage can reduce these risks by continuously monitoring the IMs' condition. The development and reliable operations of CBMs systems require rapid modeling of the faulty IM. Due to the fault-induced IM asymmetries, these models are much more complex than those used for a healthy IM. In particular, a mixed eccentricity fault (static and dynamic), which can degenerate into rubbing and destruction of the rotor, produces a non-uniform IM air gap that is different for each rotor position, which makes its very difficult to calculate the IM's inductance matrix. In this work, a new analytical model of an eccentric IM is presented. It is based on the winding tensor approach, which allows a clear separation between the air gap and winding-related faults. Contrary to previous approaches, where complex expressions have been developed for obtaining mutual inductances between conductors and windings of an eccentric IM, a conformal transformation is proposed in this work, which allows using the simple inductance expressions of a healthy IM. This novel conformal winding tensor approach (CWFA) is theoretically explained and validated with the diagnosis of two commercial IMs with a mixed eccentricity fault.


Subject(s)
Algorithms , Industry , Computer Simulation , Molecular Conformation
2.
Sensors (Basel) ; 21(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34770270

ABSTRACT

Since it is not efficient to physically study many machine failures, models of faulty induction machines (IMs) have attracted a rising interest. These models must be accurate enough to include fault effects and must be computed with relatively low resources to reproduce different fault scenarios. Moreover, they should run in real time to develop online condition-monitoring (CM) systems. Hybrid finite element method (FEM)-analytical models have been recently proposed for fault diagnosis purposes since they keep good accuracy, which is widely accepted, and they can run in real-time simulators. However, these models still require the full simulation of the FEM model to compute the parameters of the analytical model for each faulty scenario with its corresponding computing needs. To address these drawbacks (large computing power and memory resources requirements) this paper proposes sparse identification techniques in combination with the trigonometric interpolation polynomial for the computation of IM model parameters. The proposed model keeps accuracy similar to a FEM model at a much lower computational effort, which could contribute to the development and to the testing of condition-monitoring systems. This approach has been applied to develop an IM model under static eccentricity conditions, but this may extend to other fault types.

3.
Sensors (Basel) ; 21(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34372314

ABSTRACT

Induction machines (IMs) are one of the main sources of mechanical power in many industrial processes, especially squirrel cage IMs (SCIMs), due to their robustness and reliability. Their sudden stoppage due to undetected faults may cause costly production breakdowns. One of the most frequent types of faults are cage faults (bar and end ring segment breakages), especially in motors that directly drive high-inertia loads (such as fans), in motors with frequent starts and stops, and in case of poorly manufactured cage windings. A continuous monitoring of IMs is needed to reduce this risk, integrated in plant-wide condition based maintenance (CBM) systems. Diverse diagnostic techniques have been proposed in the technical literature, either data-based, detecting fault-characteristic perturbations in the data collected from the IM, and model-based, observing the differences between the data collected from the actual IM and from its digital twin model. In both cases, fast and accurate IM models are needed to develop and optimize the fault diagnosis techniques. On the one hand, the finite elements approach can provide highly accurate models, but its computational cost and processing requirements are very high to be used in on-line fault diagnostic systems. On the other hand, analytical models can be much faster, but they can be very complex in case of highly asymmetrical machines, such as IMs with multiple cage faults. In this work, a new method is proposed for the analytical modelling of IMs with asymmetrical cage windings using a tensor based approach, which greatly reduces this complexity by applying routine tensor algebra to obtain the parameters of the faulty IM model from the healthy one. This winding tensor approach is explained theoretically and validated with the diagnosis of a commercial IM with multiple cage faults.


Subject(s)
Algorithms , Industry , Computer Simulation , Reproducibility of Results
4.
Sensors (Basel) ; 21(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34300593

ABSTRACT

Over the years, induction machines (IMs) have become key components in industry applications as mechanical power sources (working as motors) as well as electrical power sources (working as generators). Unexpected breakdowns in these components can lead to unscheduled down time and consequently to large economic losses. As breakdown of IMs for failure study is not economically feasible, several IM computer models under faulty conditions have been developed to investigate the characteristics of faulty machines and have allowed reducing the number of destructive tests. This paper provides a review of the available techniques for faulty IMs modelling. These models can be categorised as models based on electrical circuits, on magnetic circuits, models based on numerical methods and the recently proposed in the technical literature hybrid models or models based on finite element method (FEM) analytical techniques. A general description of each type of model is given with its main benefits and drawbacks in terms of accuracy, running times and ability to reproduce a given fault.

SELECTION OF CITATIONS
SEARCH DETAIL
...