Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Ultrasound Obstet Gynecol ; 53(5): 583-589, 2019 May.
Article in English | MEDLINE | ID: mdl-30328169

ABSTRACT

OBJECTIVE: To evaluate the association between physical exercise during pregnancy and maternal gestational weight gain and fetal cardiac function. METHODS: This was a randomized controlled trial of women with a singleton pregnancy managed from the first trimester at the Hospital de Torrejón, Madrid, between November 2014 and June 2015. Women were randomized to either follow a supervised physical conditioning program, consisting of a 60-min session 3 days per week for the duration of pregnancy, or not attend any exercise program (controls). The primary outcome was maternal weight gain during pregnancy. Secondary outcomes included fetal cardiac function parameters evaluated at 20, 28 and 36 weeks' gestation, Cesarean section, preterm delivery, induction of labor and birth weight. A sample size of 45 in each group was planned to detect differences in maternal weight gain of at least 1 kg, with a power of > 80% and α of 0.05. RESULTS: During the study period, 120 women were randomized into the exercise (n = 75) and control (n = 45) groups. Following exclusions, the final cohort consisted of 42 women in the exercise group and 43 in the control group. Baseline characteristics (maternal age, prepregnancy body mass index, parity, conception by in-vitro fertilization, Caucasian ethnicity, physical exercise prior to pregnancy and smoker) were similar between the two groups. No differences were found between the groups in maternal weight at 20, 28, 36 and 38 weeks' gestation or in weight gain at 38 weeks. However, the proportion of women with weight loss ≥ 9 kg at 6 weeks postpartum was higher in the exercise compared with the control group (68.2% vs 42.8%; relative risk 1.593; P = 0.02). The ductus arteriosus pulsatility index (DA-PI) at 20 weeks (2.43 ± 0.40 vs 2.26 ± 0.33, P < 0.05) and the ejection fraction (EF) at 36 weeks (0.85 ± 0.13 vs 0.81 ± 0.11, P < 0.05) were higher in the exercise compared with the control group. All other evaluated fetal cardiac function parameters were similar between the two groups. CONCLUSIONS: Performing exercise during pregnancy is not associated with a reduction in maternal weight gain but increases weight loss at 6 weeks postpartum. Physical exercise during pregnancy is associated with increased fetal DA-PI at 20 weeks and EF at 36 weeks, which could reflect adaptive mechanisms. Copyright © 2018 ISUOG. Published by John Wiley & Sons Ltd.


Subject(s)
Exercise/physiology , Fetal Heart/physiology , Gestational Weight Gain/physiology , Pregnancy Trimester, First/physiology , Prenatal Care/methods , Adult , Birth Weight , Body Mass Index , Cesarean Section/statistics & numerical data , Female , Gestational Age , Humans , Infant, Newborn , Parity , Pregnancy , Prospective Studies
2.
Sci Rep ; 8(1): 2748, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426871

ABSTRACT

Chlorine resistant reverse osmosis (RO) membranes were fabricated using a multi-walled carbon nanotube-polyamide (MWCNT-PA) nanocomposite. The separation performance of these membranes after chlorine exposure (4800 ppm·h) remained unchanged (99.9%) but was drastically reduced to 82% in the absence of MWCNT. It was observed that the surface roughness of the membranes changed significantly by adding MWCNT. Moreover, membranes containing MWCNT fractions above 12.5 wt.% clearly improved degradation resistance against chlorine exposure, with an increase in water flux while maintaining salt rejection performance. Molecular dynamics and quantum chemical calculations were performed in order to understand the high chemical stability of the MWCNT-PA nanocomposite membranes, and revealed that high activation energies are required for the chlorination of PA. The results presented here confirm the unique potential of carbon nanomaterials embedded in polymeric composite membranes for efficient RO water desalination technologies.

3.
Nanotechnology ; 28(46): 465201, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29053475

ABSTRACT

Quantum molecular dynamics (QMD) and density functional theory are employed in this work in order to study the structural and electronic properties of carbon, boron nitride or hybrid BNC nanoshells. The studied nanoshells can be formed by stacking two zigzag graphene nanoribbons, two zigzag boron nitride nanoribbons or one zigzag graphene nanoribbon on a boron nitride nanoribbon. In all cases only one of the edges of the ribbon is passivated, while the other one is left unpassivated. Our QMD results show that these nanoribbons collapse just a few femtoseconds after the beginning of the simulation, forming a coalesced structure in the shape of a shell. Our band structure calculations revealed that this structures may be metallic or semiconductor, depending on its stoichiometry. Furthermore, a spin splitting for energies near the Fermi level is predicted for both the pure carbon and the hybrid BNC-nanoshell systems. We further show that when a transverse electric field is applied to these systems, the nanoshell structure tends to open up. This effect can lead to the application of these nanoshells for molecular storage. As a proof of concept, We investigate this storage effect for the H2 molecule.

4.
Sci Rep ; 7(1): 11256, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28900169

ABSTRACT

The high field phenomena of inter-valley transfer and avalanching breakdown have long been exploited in devices based on conventional semiconductors. In this Article, we demonstrate the manifestation of these effects in atomically-thin WS2 field-effect transistors. The negative differential conductance exhibits all of the features familiar from discussions of this phenomenon in bulk semiconductors, including hysteresis in the transistor characteristics and increased noise that is indicative of travelling high-field domains. It is also found to be sensitive to thermal annealing, a result that we attribute to the influence of strain on the energy separation of the different valleys involved in hot-electron transfer. This idea is supported by the results of ensemble Monte Carlo simulations, which highlight the sensitivity of the negative differential conductance to the equilibrium populations of the different valleys. At high drain currents (>10 µA/µm) avalanching breakdown is also observed, and is attributed to trap-assisted inverse Auger scattering. This mechanism is not normally relevant in conventional semiconductors, but is possible in WS2 due to the narrow width of its energy bands. The various results presented here suggest that WS2 exhibits strong potential for use in hot-electron devices, including compact high-frequency sources and photonic detectors.

5.
Nanotechnology ; 27(18): 185203, 2016 May 06.
Article in English | MEDLINE | ID: mdl-27004996

ABSTRACT

First-principles calculations are employed in the study of the electronic and quantum transport properties of hexagonally shaped boron nitride (h-BN) clusters embedded in either zigzag or armchair graphene nanoribbons. Chemical doping of the h-BN cluster was taken into consideration by using carbon atoms to replace either the boron (B27N24C3) or the nitrogen (B27N24C3) sites in the central ring. While the quantum conductance of the system with zigzag edges is found to be spin-dependent, it was observed that the system with an armchair edge requires an electron imbalance in order to show a spin-dependent conductance. Furthermore, the possibility of molecular adsorption onto these doped systems is studied. The effects of the attached molecules to the quantum conductance shows the potential of these hybrid systems for molecular sensing applications.

6.
Nano Lett ; 16(4): 2363-8, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26998817

ABSTRACT

Resonant Raman spectroscopy is a powerful tool for providing information about excitons and exciton-phonon coupling in two-dimensional materials. We present here resonant Raman experiments of single-layered WS2 and WSe2 using more than 25 laser lines. The Raman excitation profiles of both materials show unexpected differences. All Raman features of WS2 monolayers are enhanced by the first-optical excitations (with an asymmetric response for the spin-orbit related XA and XB excitons), whereas Raman bands of WSe2 are not enhanced at XA/B energies. Such an intriguing phenomenon is addressed by DFT calculations and by solving the Bethe-Salpeter equation. These two materials are very similar. They prefer the same crystal arrangement, and their electronic structure is akin, with comparable spin-orbit coupling. However, we reveal that WS2 and WSe2 exhibit quite different exciton-phonon interactions. In this sense, we demonstrate that the interaction between XC and XA excitons with phonons explains the different Raman responses of WS2 and WSe2, and the absence of Raman enhancement for the WSe2 modes at XA/B energies. These results reveal unusual exciton-phonon interactions and open new avenues for understanding the two-dimensional materials physics, where weak interactions play a key role coupling different degrees of freedom (spin, optic, and electronic).

7.
Sci Rep ; 5: 8979, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25759288

ABSTRACT

Here, we present a temperature (T) dependent comparison between field-effect and Hall mobilities in field-effect transistors based on few-layered WSe2 exfoliated onto SiO2. Without dielectric engineering and beyond a T-dependent threshold gate-voltage, we observe maximum hole mobilities approaching 350 cm(2)/Vs at T = 300 K. The hole Hall mobility reaches a maximum value of 650 cm(2)/Vs as T is lowered below ~150 K, indicating that insofar WSe2-based field-effect transistors (FETs) display the largest Hall mobilities among the transition metal dichalcogenides. The gate capacitance, as extracted from the Hall-effect, reveals the presence of spurious charges in the channel, while the two-terminal sheet resistivity displays two-dimensional variable-range hopping behavior, indicating carrier localization induced by disorder at the interface between WSe2 and SiO2. We argue that improvements in the fabrication protocols as, for example, the use of a substrate free of dangling bonds are likely to produce WSe2-based FETs displaying higher room temperature mobilities, i.e. approaching those of p-doped Si, which would make it a suitable candidate for high performance opto-electronics.

8.
Sci Rep ; 4: 4215, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24572993

ABSTRACT

Although the main Raman features of semiconducting transition metal dichalcogenides are well known for the monolayer and bulk, there are important differences exhibited by few layered systems which have not been fully addressed. WSe2 samples were synthesized and ab-initio calculations carried out. We calculated phonon dispersions and Raman-active modes in layered systems: WSe2, MoSe2, WS2 and MoS2 ranging from monolayers to five-layers and the bulk. First, we confirmed that as the number of layers increase, the E', E″ and E2g modes shift to lower frequencies, and the A'1 and A1g modes shift to higher frequencies. Second, new high frequency first order A'1 and A1g modes appear, explaining recently reported experimental data for WSe2, MoSe2 and MoS2. Third, splitting of modes around A'1 and A1g is found which explains those observed in MoSe2. Finally, exterior and interior layers possess different vibrational frequencies. Therefore, it is now possible to precisely identify few-layered STMD.

9.
Nanotechnology ; 24(4): 045201, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23298951

ABSTRACT

We report the observation of photoconduction and a strong nonlinear optical absorptive response exhibited by multi-wall carbon nanotubes. An aerosol pyrolysis method was employed for the preparation of the samples. Measurements of the optical transmittance with 7 ns pulses at 1064 nm wavelength allowed us to identify a two-photon absorption effect as the main mechanism of third-order nonlinearity. Photoconductive experiments at 445 nm wavelength seem to confirm the possibility for generating non-resonant multi-photonic absorption processes in the multi-wall carbon nanotubes. By the optical control of the conductivity in the nanotubes, we implement an optoelectronic amplitude modulator device with potential applications for sharp selective functionalities.


Subject(s)
Electrodes , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/radiation effects , Photometry/instrumentation , Refractometry/methods , Equipment Design , Equipment Failure Analysis , Light , Materials Testing , Photometry/methods , Surface Properties
10.
J Phys Conf Ser ; 429(12029)2013.
Article in English | MEDLINE | ID: mdl-26300949

ABSTRACT

Carbon nanotubes (CNTs) are important materials in advanced industries. It is a concern that pulmonary exposure to CNTs may induce carcinogenic responses. It has been recently reported that CNTs scavenge ROS though non-carbon fibers generate ROS. A comprehensive evaluation of ROS scavenging using various kinds of CNTs has not been demonstrated well. The present work specifically investigates ROS scavenging capabilities with a series of CNTs and their derivatives that were physically treated, and with the number of commercially available CNTs. CNT concentrations were controlled at 0.2 through 0.6 wt%. The ROS scavenging rate was measured by ESR with DMPO. Interestingly, the ROS scavenging rate was not only influenced by physical treatments, but was also dependent on individual manufacturing methods. Ratio of CNTs to DMPO/ hydrogen peroxide is a key parameter to obtain appropriate ROS quenching results for comparison of CNTs. The present results suggest that dangling bonds are not a sole factor for scavenging, and electron transfer on the CNT surface is not clearly determined to be the sole mechanism to explain ROS scavenging.

11.
Nanoscale ; 3(7): 2868-72, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21321755

ABSTRACT

Since the outstanding transport properties of graphene originate from its specific structure, modification at the atomic level of the graphene lattice is needed in order to change its electronic properties. Thus, topological defects play an important role in graphene and related structures. In this work, one-dimensional (1D) arrangement of topological defects in graphene are investigated within a density functional theory framework. These 1D extended lines of pentagons, heptagons and octagons are found to arise either from the reconstruction of divacancies, or from the epitaxial growth of graphene. The energetic stability and the electronic structure of different ideal extended lines of defects are calculated using a first-principles approach. Ab initio scanning tunneling microscopy (STM) images are predicted and compared to recent experiments on epitaxial graphene. Finally, local density of states and quantum transport calculations reveal that these extended lines of defects behave as quasi-1D metallic wires, suggesting their possible role as reactive tracks to anchor molecules or atoms for chemical or sensing applications.


Subject(s)
Graphite/chemistry , Nanostructures/chemistry , Quantum Theory , Thermodynamics
12.
J Nanosci Nanotechnol ; 10(9): 5576-82, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21133076

ABSTRACT

We report the production, characterization, thermal transformations (400-1000 degrees C), and magnetic properties of nanoparticles encapsulated in nitrogen-doped multiwall carbon nanotubes (CNx-MWNT), which were embedded in silicon oxide (SiOx) matrices via sol-gel techniques. The vapor chemical deposition (CVD) method with ferrocene-benzelamine mixtures was used to synthesize Fe and Fe3C nanoparticles inside CNx-MWNTs. Composites consisting of CNx-MWNTs (filler) and SiOx (matrix) were fabricated and thermally treated to different temperatures and exposure times (t). All samples were characterized using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), thermogravimetic analysis (TGA), and magnetometry (vibrating sample). We found that upon thermal treatment, the ferromagnetic nanoparticles modify their morphology, composition and aspect ratio, thus resulting in drastic changes in the magnetic and structural properties. In particular, as produced encapsulated nanoparticles mainly consisting of Fe and Fe3C phases were thermally modified into magnetite (Fe3O4). We have also observed that the hysteresis loops are very sensitive to the thermal treatment of the sample. Thus we can control the magnetic properties of the samples using thermal treatments.

13.
Phys Rev Lett ; 105(4): 045501, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20867858

ABSTRACT

Recent experimental reports indicate that Joule heating can atomically sharpen the edges of chemical vapor deposition grown graphitic nanoribbons. The absence or presence of loops between adjacent layers in the annealed materials is the topic of a growing debate that this Letter aims to put to rest. We offer a rationale explaining why loops do form if Joule heating is used alone, and why adjacent nanoribbon layers do not coalesce when Joule heating is applied after high-energy electrons first irradiate the sample. Our work, based on large-scale quantum molecular dynamics and electronic-transport calculations, shows that vacancies on adjacent graphene sheets, created by electron irradiation, inhibit the formation of edge loops.

14.
J Nanosci Nanotechnol ; 10(6): 3959-64, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20355398

ABSTRACT

We have studied in detail the carbon and nitrogen bonding environments in nitrogen-doped single-walled carbon nanotubes (SWCNTs). The samples consisting of long strands of N-doped SWCNTs were synthesized using an aerosol assisted chemical vapor deposition method involving benzylamine-ethanol-ferrocene solutions. The studied samples were produced using different benzylamine concentrations in the solutions, and exhibited a maximum concentration of ca. 0.3%at of N, determined by X-ray photoelectron spectroscopy (XPS). In general, we observed that the ratio between substitutional nitrogen and the pyridine-like bonded nitrogen varied upon the precursor composition. Moreover, we have observed that the sp2-like substitutional configuration of the C-N bond does not exceed the 50% of the total N atomic incorporation. In addition, we have characterized all these samples using Raman spectroscopy and electron microscopy.

16.
Nanotechnology ; 20(32): 325703, 2009 Aug 12.
Article in English | MEDLINE | ID: mdl-19620764

ABSTRACT

The magnetic and electronic properties of MoS(2) nanoribbons with zigzag and armchair edges are investigated using LSDA-DFT. We found that the properties of the nanoribbons are very different from bulk MoS(2) due to edge states. Armchair nanoribbons could be metallic and exhibit a magnetic moment; however, when passivating with hydrogen, they become semiconducting. Zigzag nanoribbons are metallic and exhibit unusual magnetic properties regardless of passivation. Our results could explain the recent evidence of ferromagnetism in flat MoS(2) clusters, and motivate the synthesis of novel MoS(2) nanosystems.

17.
Nano Lett ; 9(6): 2267-72, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19449833

ABSTRACT

Substitutional phosphorus doping in single-wall carbon nanotubes (SWNTs) is investigated by density functional theory and resonance Raman spectroscopy. Electronic structure calculations predict charge localization on the phosphorus atom, generating nondispersive valence and conduction bands close to the Fermi level. Besides confirming sustitutional doping, accurate analysis of electron and phonon renormalization effects in the double-resonance Raman process elucidates the different nature of the phosphorus donor doping (localized) when compared to nitrogen substitutional doping (nonlocalized) in SWNTs.

18.
Nano Lett ; 8(11): 3651-5, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18842032

ABSTRACT

In this letter, we report the synthesis and characterization of a novel Se-C hybrid nanostructure. X-ray diffraction data indicates a high degree of crystallinity for the nanostructured Se shell. High resolution transmission electron microscopy images show that the Se-C nanostructures consist of coaxial nanocables made of single wall carbon nanotubes, as the core, surrounded by a trigonal Selenium shell. Resonance Raman spectroscopy was used to access the properties of both the carbon nanotubes and selenium. The behavior of the radial breathing mode and the G-band indicates that the Se shell primarily covers semiconducting nanotubes. X-ray photoelectron spectroscopy show that the nanocables have a thin coverage of selenium oxide. We envisage that this system could be used in the fabrication of photonic devices as an interface between electronic and photonic materials.

19.
Nano Lett ; 8(11): 3879-86, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18937518

ABSTRACT

A double-walled carbon nanotube (DWNT) provides the simplest system to study the interaction between concentric layers in carbon nanotubes. The inner and outer walls of a DWNT can be metallic (M) or semiconducting (S), and each of the four possible configurations (M@M, M@S, S@S, S@M) has different electronic properties. Here we report, for the first time, detailed Raman spectroscopy experiments carried out on individual DWNTs, where both concentric tubes are measured under resonance conditions, in order to understand the dependence of their electronic and optical properties according to their configuration. Interestingly, for the three DWNTs that were studied, the inner-outer tube distance (e.g., 0.31-0.33 nm) was less than the interlayer spacing in graphite. We believe these results have important implications in the fabrication of electronic devices using different types of S and M tubular interconnects.

20.
Nano Lett ; 8(4): 1026-32, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18333621

ABSTRACT

We first describe the synthesis of novel and highly porous boron nitride (BN) nanospheres (100-400 nm o.d.) that exhibit a rough surface consisting of open BN nanocones and corrugated BN ribbons. The material was produced by reacting B2O3 with nanoporous carbon spheres under nitrogen at ca. 1750 degrees C. The BN nanospheres were characterized using scanning electron microscopy, high-resolution electron microscopy, and electron energy loss spectroscopy. The porous BN spheres show relatively large surface areas of ca. 290 m2/g and exhibit surprisingly stable field emission properties at low turn-on voltages (e.g., 1-1.3 V/microm). We attribute these outstanding electron emission properties to the presence of finite BN ribbons located at the surface of the nanospheres (exhibiting zigzag edges), which behave like metals as confirmed by first-principles calculations. In addition, our ab initio theoretical results indicate that the work function associated to these zigzag BN ribbons is 1.3 eV lower when compared with BN-bulk material.

SELECTION OF CITATIONS
SEARCH DETAIL
...