Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 19154, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154475

ABSTRACT

The environmental effects shape genetic changes in the individuals within plant populations, which in turn contribute to the enhanced genetic diversity of the population as a whole. Thus, individuals within the same species can acquire and accumulate genetic differences in their genomes depending on their local environment and evolutionary history. IRE1 is a universal endoplasmic reticulum (ER) stress sensor that activates an evolutionarily conserved signalling cascade in response to biotic and abiotic stresses. Here, we selected nine different Arabidopsis accessions along with the reference ecotype Columbia-0, based on their geographical origins and differential endogenous IRE1 expression under steady-state conditions to investigate the natural variation of ER stress responses. We cloned and analysed selected upstream regulatory regions of IRE1a and IRE1b, which revealed differential levels of their inducibility. We also subjected these accessions to an array of biotic and abiotic stresses including heat, ER stress-inducing chemical tunicamycin, phytohormone salicylic acid, and pathogen infection. We measured IRE1-mediated splicing of its evolutionarily conserved downstream client as well as transcript accumulation of ER-resident chaperones and co-chaperones. Collectively, our results illustrate the expression polymorphism of a major plant stress receptor and its relationship with molecular and physiological ER stress sensitivity.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Endoplasmic Reticulum Stress/physiology , Gene Expression Regulation, Plant , Protein Kinases/genetics , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Endoplasmic Reticulum Stress/drug effects , Genetic Variation , Plant Growth Regulators/pharmacology , Protein Kinases/metabolism , Stress, Physiological/drug effects , Stress, Physiological/physiology , Tunicamycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...