Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
iScience ; 25(8): 104787, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35992086

ABSTRACT

Despite much progress in developing better drugs, many patients with acute myeloid leukemia (AML) still die within a year of diagnosis. This is partly because it is difficult to identify therapeutic targets that are effective across multiple AML subtypes. One common factor across AML subtypes is the presence of a block in differentiation. Overcoming this block should allow for the identification of therapies that are not dependent on a specific mutation for their efficacy. Here, we used a phenotypic screen to identify compounds that stimulate differentiation in genetically diverse AML cell lines. Lead compounds were shown to decrease tumor burden and to increase survival in vivo. Using multiple complementary target deconvolution approaches, these compounds were revealed to be anti-mitotic tubulin disruptors that cause differentiation by inducing a G2-M mitotic arrest. Together, these results reveal a function for tubulin disruptors in causing differentiation of AML cells.

2.
Drug Discov Today ; 27(11): 103338, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35973661

ABSTRACT

Significant efforts have been channeled into developing antibodies for the treatment of CNS indications. Disappointment with the first generation of clinical Tau antibodies in Alzheimer's disease has highlighted the challenges in understanding whether an antibody can reach or affect the target in the compartment where it is involved in pathological processes. Here, we highlight different aspects essential for improving translatability of Tau-based immunotherapy.

3.
Pharm Res ; 39(7): 1321-1341, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35411506

ABSTRACT

PURPOSE: More than 15 years have passed since the first description of the unbound brain-to-plasma partition coefficient (Kp,uu,brain) by Prof. Margareta Hammarlund-Udenaes, which was enabled by advancements in experimental methodologies including cerebral microdialysis. Since then, growing knowledge and data continue to support the notion that the unbound (free) concentration of a drug at the site of action, such as the brain, is the driving force for pharmacological responses. Towards this end, Kp,uu,brain is the key parameter to obtain unbound brain concentrations from unbound plasma concentrations. METHODS: To understand the importance and impact of the Kp,uu,brain concept in contemporary drug discovery and development, a survey has been conducted amongst major pharmaceutical companies based in Europe and the USA. Here, we present the results from this survey which consisted of 47 questions addressing: 1) Background information of the companies, 2) Implementation, 3) Application areas, 4) Methodology, 5) Impact and 6) Future perspectives. RESULTS AND CONCLUSIONS: From the responses, it is clear that the majority of the companies (93%) has established a common understanding across disciplines of the concept and utility of Kp,uu,brain as compared to other parameters related to brain exposure. Adoption of the Kp,uu,brain concept has been mainly driven by individual scientists advocating its application in the various companies rather than by a top-down approach. Remarkably, 79% of all responders describe the portfolio impact of Kp,uu,brain implementation in their companies as 'game-changing'. Although most companies (74%) consider the current toolbox for Kp,uu,brain assessment and its validation satisfactory for drug discovery and early development, areas of improvement and future research to better understand human brain pharmacokinetics/pharmacodynamics translation have been identified.


Subject(s)
Blood-Brain Barrier , Central Nervous System Agents , Drug Discovery , Brain , Drug Discovery/methods , Humans
4.
Methods Mol Biol ; 2454: 521-530, 2022.
Article in English | MEDLINE | ID: mdl-33689164

ABSTRACT

Development of central nervous system (CNS) therapeutics and their brain delivery is impeded by the presence of the blood-brain barrier (BBB). In vitro BBB models, in particular human in vitro BBB models, are critical tools for CNS drug research and development. However, the availability of primary human microvascular endothelial cells is very limited for in vitro modeling. Advances in human induced pluripotent stem cell (hiPSC) technologies provide reproducible human cell resources for scientific research, regenerative medicine, and in vitro modeling. In particular, the differentiation of hiPSC into brain endothelial cells provides scalable, renewable and unlimited cells for in vitro BBB modeling that enables rapid screening of CNS drugs in terms of their BBB permeability. The following protocols provide a general guideline for hiPSC culture, differentiation of hiPSC into endothelial cells (hiPSC-ECs), generation of rat primary astrocytes, and establishment of a two-chamber co-culture in vitro BBB model.


Subject(s)
Blood-Brain Barrier , Induced Pluripotent Stem Cells , Animals , Cell Differentiation/physiology , Coculture Techniques , Endothelial Cells , Humans , Rats
5.
Nat Rev Drug Discov ; 20(5): 362-383, 2021 05.
Article in English | MEDLINE | ID: mdl-33649582

ABSTRACT

Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood-brain barrier-crossing strategies - with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes - and analyse their potential in the treatment of CNS disorders.


Subject(s)
Blood-Brain Barrier/metabolism , Central Nervous System Agents/pharmacokinetics , Central Nervous System Agents/therapeutic use , Central Nervous System Diseases/drug therapy , Drug Delivery Systems , Animals , Humans
6.
Nanoscale Adv ; 3(9): 2488-2500, 2021 May 04.
Article in English | MEDLINE | ID: mdl-36134165

ABSTRACT

Hollow viral vectors, such as John Cunningham virus-like particles (JC VLPs), provide a unique opportunity to deliver drug cargo into targeted cells and tissue. Current understanding of the entry of JC virus in brain cells has remained insufficient. In particular, interaction of JC VLPs with the blood-brain barrier (BBB) has not been analyzed in detail. Thus, JC VLPs were produced in this study for investigating the trafficking across the BBB. We performed a carotid artery injection procedure for mouse brain to qualitatively study JC VLPs' in vivo binding and distribution and used in vitro approaches to analyze their uptake and export kinetics in brain endothelial cells. Our results show that clathrin-dependent mechanisms contributed to the entry of VLPs into brain endothelial cells, and exocytosis or transcytosis of VLPs across the BBB was observed in vitro. VLPs were found to interact with sialic acid glycans in mouse brain endothelia. The ability of JC VLPs to cross the BBB can be useful in developing a delivery system for transport of genes and small molecule cargoes to the brain.

7.
Drug Discov Today ; 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32971235

ABSTRACT

Investment in phenotypic drug discovery has led to increased demand for rapid and robust target deconvolution to aid successful drug development. Although methods for target identification and mechanism of action (MoA) discovery are flourishing, they typically lead to lists of putative targets. Validating which target(s) are involved in the therapeutic mechanism of a compound poses a significant challenge, requiring direct binding, target engagement, and functional studies in relevant physiological contexts. A combination of orthogonal approaches can allow target identification beyond the proteome as well as aid prioritisation for resource-intensive target validation studies.

8.
Neurosci Bull ; 35(6): 996-1010, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31079318

ABSTRACT

An in vitro blood-brain barrier (BBB) model is critical for enabling rapid screening of the BBB permeability of the drugs targeting on the central nervous system. Though many models have been developed, their reproducibility and renewability remain a challenge. Furthermore, drug transport data from many of the models do not correlate well with the data for in vivo BBB drug transport. Induced-pluripotent stem cell (iPSC) technology provides reproducible cell resources for in vitro BBB modeling. Here, we generated a human in vitro BBB model by differentiating the human iPSC (hiPSC) line GM25256 into brain endothelial-type cells. The model displayed BBB characteristics including tight junction proteins (ZO-1, claudin-5, and occludin) and endothelial markers (von Willebrand factor and Ulex), as well as high trans-endothelial electrical resistance (TEER) (1560 Ω.cm2 ± 230 Ω.cm2) and γ-GTPase activity. Co-culture with primary rat astrocytes significantly increased the TEER of the model (2970 Ω.cm2 to 4185 Ω.cm2). RNAseq analysis confirmed the expression of key BBB-related genes in the hiPSC-derived endothelial cells in comparison with primary human brain microvascular endothelial cells, including P-glycoprotein (Pgp) and breast cancer resistant protein (BCRP). Drug transport assays for nine CNS compounds showed that the permeability of non-Pgp/BCRP and Pgp/BCRP substrates across the model was strongly correlated with rodent in situ brain perfusion data for these compounds (R2 = 0.982 and R2 = 0.9973, respectively), demonstrating the functionality of the drug transporters in the model. Thus, this model may be used to rapidly screen CNS compounds, to predict the in vivo BBB permeability of these compounds and to study the biology of the BBB.


Subject(s)
Blood-Brain Barrier/physiology , Capillary Permeability/physiology , In Vitro Techniques/methods , Induced Pluripotent Stem Cells/physiology , ATP-Binding Cassette Transporters , Animals , Astrocytes , Cell Differentiation , Cell Line , Cells, Cultured , Coculture Techniques , Endothelial Cells , Humans , Permeability , Rats , Rats, Sprague-Dawley
9.
Methods Mol Biol ; 1994: 31-39, 2019.
Article in English | MEDLINE | ID: mdl-31124102

ABSTRACT

To better understand and model neurological, in particular neurodegenerative diseases, human induced pluripotent stem cells (hiPSCs) offer a great source for generation of neural cells. We provide a protocol for the differentiation of hiPSc-derived astrocytes in vitro. This protocol not only is chemically defined, that is, it does not use serum, but also allows for the expansion of astrocyte progenitor cells and mature astrocytes. Large batches of hiPSc-derived astrocytes can be stored and used for defined in vitro disease models.


Subject(s)
Astrocytes/cytology , Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/cytology , Cell Culture Techniques , Cell Differentiation/drug effects , Cells, Cultured , Culture Media , Humans , Induced Pluripotent Stem Cells/drug effects , Models, Biological , Neural Stem Cells/drug effects , Neurodegenerative Diseases , Neurogenesis/drug effects
10.
Stem Cell Reports ; 11(4): 897-911, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30245212

ABSTRACT

Reproducibility in molecular and cellular studies is fundamental to scientific discovery. To establish the reproducibility of a well-defined long-term neuronal differentiation protocol, we repeated the cellular and molecular comparison of the same two iPSC lines across five distinct laboratories. Despite uncovering acceptable variability within individual laboratories, we detect poor cross-site reproducibility of the differential gene expression signature between these two lines. Factor analysis identifies the laboratory as the largest source of variation along with several variation-inflating confounders such as passaging effects and progenitor storage. Single-cell transcriptomics shows substantial cellular heterogeneity underlying inter-laboratory variability and being responsible for biases in differential gene expression inference. Factor analysis-based normalization of the combined dataset can remove the nuisance technical effects, enabling the execution of robust hypothesis-generating studies. Our study shows that multi-center collaborations can expose systematic biases and identify critical factors to be standardized when publishing novel protocols, contributing to increased cross-site reproducibility.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Neurons/cytology , Proteomics/methods , Cell Line , Factor Analysis, Statistical , Gene Expression Regulation , Genotype , Humans , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Phenotype , Reproducibility of Results , Transcriptome/genetics
11.
Drug Discov Today ; 23(7): 1357-1372, 2018 07.
Article in English | MEDLINE | ID: mdl-29548981

ABSTRACT

Recent years have seen a paradigm shift away from optimizing the brain:blood concentration ratio toward the more relevant brain:blood unbound concentration ratio (Kp,uu,br) in CNS drug discovery. Here, we review the recent developments in the in silico and in vitro model systems to predict the Kp,uu,br of discovery compounds with special emphasis on the in-vitro-in-vivo correlation. We also discuss clinical 'translation' of rodent Kp,uu,br and highlight the future directions for improvement in brain penetration prediction. Important in this regard are in silico Kp,uu,br models built on larger datasets of high quality, calibration and deeper understanding of experimental in vitro transporter systems, and better understanding of blood-brain barrier transporters and their in vivo relevance aside from P-gp and BCRP.


Subject(s)
Blood-Brain Barrier/metabolism , Capillary Permeability , Central Nervous System Agents/pharmacokinetics , Computer Simulation , Drug Discovery/methods , In Vitro Techniques , Models, Biological , Animals , Biological Transport , Central Nervous System Agents/administration & dosage , Central Nervous System Agents/blood , Humans , Membrane Transport Proteins/metabolism , Tissue Distribution
12.
SLAS Discov ; 23(8): 832-841, 2018 09.
Article in English | MEDLINE | ID: mdl-29505735

ABSTRACT

Antibody-triggered endocytosis (ATE) is a biological mechanism on which many therapeutic strategies are grounded, such as delivery of antibody-drug conjugates (ADCs). Current methods monitoring ATE include confocal Z-stack analysis, acid wash, antibody quenching, and pH-sensitive dye labeling. However, those generate less quantifiable results with low throughput. Here we report a new method referred to as "paired imaging measurement" to analyze ATE using a quantitative algorithm in conjunction with high-content imaging. With two sequential measurements of cell surface antibody employing live cell staining and total antibody by immunostaining before and after cell permeabilization, intracellular antibody undergoing endocytosis can be quantified indirectly. Antibodies against CD98 and transferrin receptor were tested on hCMEC/D3 and hiPSC-derived endothelial cells. The maximal response and potency of endocytosed antibodies were generated with good assay robustness (Z' > 0.6) and >5-fold signal/background ratio. Antibody endocytosis response ranking is consistent between batches ( R2 > 0.9). The obtained results were confirmed by other traditional methods. In conclusion, we have developed a novel method using a quantitative imaging algorithm in conjunction with live cell staining for high-throughput investigation of ATE.


Subject(s)
Antibodies/immunology , Endocytosis/immunology , Molecular Imaging , Algorithms , Cells, Cultured , Drug Discovery/methods , Fluorescent Dyes , High-Throughput Screening Assays , Humans , Hydrogen-Ion Concentration , Microscopy, Confocal , Molecular Imaging/methods , Workflow
13.
J Pharmacol Exp Ther ; 365(2): 336-345, 2018 05.
Article in English | MEDLINE | ID: mdl-29511033

ABSTRACT

Little is known about the impact of the blood-nerve barrier (BNB) on drug distribution into peripheral nerves. In this study, we examined the peripheral nerve penetration in rats of 11 small-molecule drugs possessing diverse physicochemical and transport properties and ProTx-II, a tarantula venom peptide with molecular mass of 3826 Daltons. Each drug was administered as constant rate intravenous infusion for 6 hours (small molecules) or 24 hours (ProTx-II). Blood and tissues including brain, spinal cord, sciatic nerve, and dorsal root ganglion (DRG) were collected for drug concentration measurements. Unbound fractions of a set of compounds were determined by equilibrium dialysis method in rat blood, brains, spinal cords, sciatic nerves, and DRG. We also investigated the influence of N-[4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]phenyl]-5-methoxy-9-oxo-10H-acridine-4-carboxamide (GF120918), a P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) inhibitor, on the peripheral nerve and central nervous system (CNS) tissue penetration of imatinib. We found that: 1) the unbound fraction in brain tissue homogenate highly correlates with that in the spinal cord, sciatic nerve, and DRG for a set of compounds and thus provides a good surrogate for spinal cord and peripheral nerve tissues, 2) small-molecule drugs investigated can penetrate the DRG and sciatic nerve, 3) P-gp and BCRP have a limited impact on the distribution of small-molecule drugs into peripheral nerves, and 4) DRG is permeable to ProTx-II, but its distribution into sciatic nerve and CNS tissues is restricted. These results demonstrate that small-molecule drugs investigated can penetrate peripheral nerve tissues, and P-gp/BCRP may not be a limiting factor at the BNB. Biologics as large as ProTx-II can access the DRG but not sciatic nerve and CNS tissues.


Subject(s)
Peripheral Nerves/metabolism , Pharmaceutical Preparations/metabolism , Animals , Male , Rats , Rats, Sprague-Dawley , Small Molecule Libraries/metabolism
14.
Neuropharmacology ; 120: 8-10, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-27318272

ABSTRACT

The Blood-Brain Barrier (BBB) represents a major hurdle in the development of treatments for CNS disorders due to the fact that it very effectively keeps drugs, especially biological macromolecules, out of the brain. Concomitantly with the increasing importance of biologics research on the BBB and, more specifically, on brain delivery technologies has intensified in recent years. Public-Private Partnerships (PPPs) represent an innovative opportunity to address such complex challenges as they bring together the best expertise from both industry and academia. Here we present the IMI-JU COMPACT (Collaboration on the Optimisation of Macromolecular Pharmaceutical Access to Cellular Targets) consortium working on nanocarriers for targeted delivery of macromolecules as an example. The scope of the consortium, its goals and the expertise within the consortium are outlined. This article is part of the Special Issue entitled "Beyond small molecules for neurological disorders".


Subject(s)
Biomedical Research , Blood-Brain Barrier/physiology , Brain/physiology , Macromolecular Substances , Public-Private Sector Partnerships , Animals , Blood-Brain Barrier/drug effects , Brain/drug effects , Humans , Macromolecular Substances/pharmacology , Macromolecular Substances/therapeutic use
15.
Biochim Biophys Acta ; 1854(8): 979-86, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25882196

ABSTRACT

Evaluation of drug-target interaction kinetics is becoming increasingly important during the drug-discovery process to investigate selectivity of a drug and predict in vivo target occupancy. To date, it remains challenging to obtain kinetic information for interactions between G-protein-coupled receptors (GPCRs) and small-molecule ligands in a label-free manner. Often GPCRs need to be solubilized or even stabilized by mutations which can be difficult and is time consuming. In addition, it is often unclear if the native conformation of the receptors is sustained. In this study, surface plasmon resonance (SPR) and surface acoustic wave (SAW) technologies have been used to detect ligand binding to the GPCR chemokine (C-X-C motif) receptor 4 (CXCR4) expressed in lipoparticles. We first evaluated different strategies to immobilize CXCR4-expressing lipoparticles. The highest small-molecule binding signal in SPR and SAW was achieved with a matrix-free carboxymethylated sensor chip coated with wheat germ agglutinin for lipoparticle capturing. Next, the binding kinetics of the anti-CXCR4 antibody 12G5 raised against a conformational epitope (k(on)=1.83×10(6)M(-1)s(-1), k(off)=2.79×10(-4) s(-1)) and the small molecule AMD3100 (k(on)=5.46×10(5)M(-1)s(-1), k(off)=1.01×10(-2)s(-1)) were assessed by SAW. Our kinetic and affinity data are consistent with previously published radioligand-binding experiments using cells and label-free experiments with solubilized CXCR4. This is the first study demonstrating label-free kinetic characterization of small-molecule binding to a GPCR in the membrane environment. The presented method holds the potential to greatly facilitate label-free assay development for GPRCs that can be expressed at high levels in lipoparticles.


Subject(s)
Cell Membrane/chemistry , Heterocyclic Compounds/chemistry , Receptors, CXCR4/chemistry , Surface Plasmon Resonance , Benzylamines , Cell Membrane/genetics , Cell Membrane/metabolism , Cyclams , HEK293 Cells , Heterocyclic Compounds/metabolism , Humans , Kinetics , Protein Binding , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism
16.
Drug Discov Today ; 17(21-22): 1217-23, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22772050

ABSTRACT

Huntington's disease (HD) is a progressive and fatal neurodegenerative disease, and the most common inherited CAG repeat disorder. A polyglutamine expansion in the N-terminus of the huntingtin protein (HTT) leads to protein misfolding and downstream pathogenic processes culminating in widespread functional impairment and neurodegeneration in the striatum, cortex and other brain areas. To date, only symptomatic treatments are available that address motor, psychiatric and cognitive deficits. Here we review recent strategies for developing disease-modifying therapies designed to limit or abolish the pathogenic activities of the primary molecular target in HD, the mutant HTT protein itself.


Subject(s)
Drug Design , Huntington Disease/drug therapy , Nerve Tissue Proteins/genetics , Animals , Brain/physiopathology , Cognition Disorders/drug therapy , Cognition Disorders/etiology , Humans , Huntingtin Protein , Huntington Disease/genetics , Huntington Disease/physiopathology , Molecular Targeted Therapy , Mutation , Protein Folding
17.
Neuropharmacology ; 62(7): 2184-91, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22300836

ABSTRACT

Dopamine, serotonin and glutamate play a role in the pathophysiology of schizophrenia. In the brain a functional crosstalk between the serotonin receptor 5-HT(2A) and the metabotropic glutamate receptor mGlu(2) has been demonstrated. Such a crosstalk may be mediated indirectly through neuronal networks or directly by receptor oligomerization. A direct link of the 5-HT(2A)-mGlu(2) heterocomplex formation to receptor function, i.e. to intracellular signaling, has not been fully demonstrated yet. Here we confirm the formation of 5-HT(2A)-mGlu(2) heterocomplexes using quantitative Snap/Clip-tag based HTRF methods. Additionally, mGlu(2) formed complexes with 5-HT(2B) and mGlu(5) but not 5-HT(2C) indicating that complex formation is not specific to the 5-HT(2A)-mGlu(2) pair. We studied the functional consequences of the 5-HT(2A)-mGlu(2) heterocomplex addressing cellular signaling pathways. Co-expression of receptors in HEK-293 cells had no relevant effects on signaling mediated by the individual receptors when mGlu(2) agonists, antagonists and PAMs, or 5-HT(2A) hallucinogenic and non-hallucinogenic agonists and antagonists were used. Hallucinogenic 5-HT(2A) agonists induced signaling through G(q/11), but not G(i) and thus did not lead to modulation of intracellular cAMP levels. In membranes of the medial prefrontal cortex [(3)H]-LY341495 binding competition of mGlu(2/3) agonist LY354740 was not influenced by 2,5-dimethoxy-4-iodoamphetamine (DOI). Taken together, the formation of GPCR heterocomplexes does not necessarily translate into second messenger effects. These results do not put into question the well-documented functional cross-talk of the two receptors in the brain, but do challenge the biological relevance of the 5-HT(2A)-mGlu(2) heterocomplex.


Subject(s)
Protein Multimerization/physiology , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction/physiology , Animals , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/physiology , HEK293 Cells , Humans , Protein Multimerization/drug effects , Rats , Rats, Wistar , Receptor Cross-Talk/physiology , Receptor, Serotonin, 5-HT2A/physiology , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/physiology , Signal Transduction/drug effects
18.
Comb Chem High Throughput Screen ; 15(5): 372-85, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22272661

ABSTRACT

Dysfunction of P/Q-type calcium channels is thought to underlie a variety of neurological diseases. There is evidence that migraine, Alzheimer's disease, and epilepsy involve a gain-of-function of the channel, leading to abnormal presynaptic vesicle release. P/Q-channel blockers may normalize current flow and consequently lead to an alleviation of disease symptoms. Although the medical need is high, there are no such compounds on the market. Here we describe a high throughput screen (HTS) for P/Q-type calcium channel blockers and the confirmation of hits by automated electrophysiology. We generated a HEK293 cell line stably expressing the α1A subunit of the P/Q-type calcium channel under control of a tetracycline (Tet) promoter. The accessory ß1.1 and α2δ1 subunits were co-expressed constitutively. The cell line was pharmacologically characterized by ion channel specific modulators, and revealed functional P/Q-type calcium currents. Using a fluorescence imaging plate reader (FLIPR), an assay for P/Q-type calcium channels was established based on a calcium sensitive dye. HTS of a 150,000 compound-containing sub-library led to the identification of 3262 hits that inhibited the fluorescence signal with potencies below 10 µM. Hit-to-lead (HTL) efforts identified 12,400 analogues. Compounds were clustered into 37 series, and 8 series of interest were prioritized. An electrophysiological secondary screen, providing a more direct measure of channel function, was implemented into the HTL process. 27 selected exemplars of different chemotypes were validated by automated whole-cell patch clamp analysis at inactivated channel state. The discovery of P/Q-channel blockers may foster the development of new therapeutics for a variety of neurological diseases.


Subject(s)
Calcium Channel Blockers/analysis , Calcium Channels, P-Type/metabolism , Calcium Channels, Q-Type/metabolism , High-Throughput Screening Assays/methods , Calcium Channel Blockers/pharmacology , Cell Line , Electrophysiology , HEK293 Cells , Humans , Patch-Clamp Techniques/methods , Spectrometry, Fluorescence/methods , Transfection
19.
Psychopharmacology (Berl) ; 218(4): 635-47, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21643676

ABSTRACT

RATIONALE: α7 nicotinic acetylcholine receptor (nAChR) agonists are proposed as candidate agents for the adjunctive treatment of cognitive deficits associated with schizophrenia. Despite the pursuit of such an approach clinically, it is surprising that the preclinical profile of pro-cognitive agents in conjunction with antipsychotic drugs is currently unexplored. OBJECTIVES: We determined if the memory-enhancing effects of the selective α7 nAChR agonist WYE-103914 were preserved in the presence of the atypical antipsychotic drug risperidone, and if the antipsychotic-like profile of risperidone was preserved in the presence of WYE-103914. METHODS: Using the rat novel object recognition (NOR) paradigm, the maintenance of memory-enhancing activity of the α7 nAChR agonist WYE-103914 in the presence of risperidone was examined. Similarly, in the standard tests of antipsychotic-like activity, apomorphine-induced climbing (AIC) in mice and conditioned avoidance responding (CAR) in rats, the preservation of antipsychotic-like activity of risperidone was evaluated in the presence of WYE-103914. RESULTS: WYE-103914 exhibited memory-enhancing activity in rat NOR, and this effect of WYE-103914 was retained in the presence of risperidone. In AIC, the atypical antipsychotic profile of risperidone was not significantly altered by WYE-103914. In contrast, WYE-103914 moderately potentiated the efficacy profile of risperidone in CAR, an effect that did not appear to be convincingly linked to a pharmacokinetic interaction. CONCLUSIONS: These data underscore the value of a preclinical evaluation of the adjunctive profile of a memory-enhancing agent in combination with antipsychotics and provide further support to augmentation with α7 nAChR agonists to address the cognitive deficits associated with schizophrenia.


Subject(s)
Cognition Disorders/drug therapy , Pyridines/pharmacology , Risperidone/pharmacology , Schizophrenia/drug therapy , Urea/analogs & derivatives , Animals , Antipsychotic Agents/pharmacology , Avoidance Learning/drug effects , Cognition Disorders/etiology , Drug Evaluation, Preclinical , Drug Interactions , Drug Therapy, Combination , Male , Memory/drug effects , Mice , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism , Schizophrenia/physiopathology , Urea/pharmacology , alpha7 Nicotinic Acetylcholine Receptor
20.
FASEB J ; 25(6): 1983-2000, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21393573

ABSTRACT

Humanin (HN) is a 24-residue peptide displaying a protective activity in vitro against a range of cytotoxic and neurotoxic insults, as well as mediating in vivo amelioration of Alzheimer disease (AD)-related memory impairment in experimental models. Published evidence suggests that the mechanisms through which HN exerts its cyto- and neuroprotective activity may include its secretion and binding to membrane-associated receptors. Here, we describe the identification of a new modulator of HN neuroprotective activity, V-set and transmembrane domain containing 2 like (VSTM2L), previously known as C20orf102. VSTM2L interacts with HN in both yeast and mammalian cells, is secreted in cultured cells, is present in serum, and is selectively expressed in the central nervous system. VSTM2L colocalizes with HN in distinct brain areas as well as in primary cultured neurons, where it plays a role in the modulation of neuronal viability. When tested in HN neuroprotection bioassays, VSTM2L acts as a strong antagonist of HN neuroprotective activity. In summary, VSTM2L is the first example of a secreted antagonist of HN and may play a role in the modulation of HN biological functions.


Subject(s)
Gene Expression Regulation/physiology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Amino Acid Sequence , Animals , Base Sequence , Brain/cytology , Brain/metabolism , Cell Line , Cloning, Molecular , Female , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Neurons/cytology , Neurons/metabolism , Rats , Rats, Wistar , Saccharomyces cerevisiae , Spinal Cord/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...