Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14793, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684326

ABSTRACT

Bacterial aggregation by mixing with polymers is applied as pretreatment to identify pathogens in patients with infectious diseases. However, the detailed interaction between polymers and bacteria has yet to be fully understood. Here, we investigate the interaction between polyallylamine and Escherichia coli by isothermal titration calorimetry. Aggregation was observed at pH 10 and the binding was driven by favorable enthalpic gain such as the electrostatic interaction. Neither aggregation nor the apparent heat of binding was observed at pH 4.0, despite the strong positive charge of polyallylamine. These results suggest that intermolecular repulsive forces of the abundant positive charge of polyallylamine cause an increased loss of conformational entropy by binding. Non-electrostatic interaction plays a critical role for aggregation.


Subject(s)
Escherichia coli , Polyamines , Humans , Calorimetry , Polymers
2.
Biol Methods Protoc ; 7(1): bpac009, 2022.
Article in English | MEDLINE | ID: mdl-35664806

ABSTRACT

Mutation detection is of major interest in molecular diagnostics, especially in the field of oncology. However, detection can be challenging as mutant alleles often coexist with excess copies of wild-type alleles. Bridged nucleic acid (BNA)-clamp PCR circumvents this challenge by preferentially suppressing the amplification of wild-type alleles and enriching rare mutant alleles. In this study, we screened cationic copolymers containing nonionic and anionic repeat units for their ability to (i) increase the Tm of double-stranded DNA, (ii) avoid PCR inhibition, and (iii) enhance the suppression of wild-type amplification in BNA-clamp PCR to detect the KRAS G13D mutation. The selected copolymers that met these criteria consisted of four types of amines and anionic and/or nonionic units. In BNA-clamp PCR, these copolymers increased the threshold cycle (C t) of the wild-type allele only and enabled mutation detection from templates with a 0.01% mutant-to-wild-type ratio. Melting curve analysis with 11-mer DNA-DNA or BNA-DNA complementary strands showed that these copolymers preferentially increased the Tm of perfectly matched strands over strands containing 1-bp mismatches. These results suggested that these copolymers preferentially stabilize perfectly matched DNA and BNA strands and thereby enhance rare mutant detection in BNA-clamp PCR.

3.
J Microbiol Methods ; 139: 54-60, 2017 08.
Article in English | MEDLINE | ID: mdl-28461023

ABSTRACT

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can be used to identify pathogens in blood culture samples. However, sample pretreatment is needed for direct identification of microbes in blood culture bottles. Conventional protocols are complex and time-consuming. Therefore, in this study, we developed a method for collecting bacteria using polyallylamine-polystyrene copolymer for application in wastewater treatment technology. Using representative bacterial species Escherichia coli and Staphylococcus capitis, we found that polyallylamine-polystyrene can form visible aggregates with bacteria, which can be identified using MALDI-TOF MS. The processing time of our protocol was as short as 15min. Hemoglobin interference in MALDI spectra analysis was significantly decreased in our method compared with the conventional method. In a preliminary experiment, we evaluated the use of our protocol to identify clinical isolates from blood culture bottles. MALDI-TOF MS-based identification of 17 strains from five bacterial species (E. coli, Klebsiella pneumoniae, Enterococcus faecalis, S. aureus, and S. capitis) collected by our protocol was satisfactory. Prospective large-scale studies are needed to further evaluate the clinical application of this novel and simple method of collecting bacteria in blood culture bottles.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Blood Culture , Polymers/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Bacterial Infections/microbiology , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Hemoglobins/chemistry , Humans , Polyamines/chemistry , Polystyrenes/chemistry , Staphylococcal Infections/microbiology , Staphylococcus/classification , Staphylococcus/isolation & purification , Staphylococcus aureus/isolation & purification , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL