Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032668

ABSTRACT

Brain disorders represent an ever-increasing health challenge worldwide. While conventional drug therapies are less effective due to the presence of the blood-brain barrier, infusion-based methods of drug delivery to the brain represent a promising option. Since these methods are mechanically controlled and involve multiple physical phases ranging from the neural and molecular scales to the brain scale, highly efficient and precise delivery procedures can significantly benefit from a comprehensive understanding of drug-brain and device-brain interactions. Behind these interactions are principles of biophysics and biomechanics that can be described and captured using mathematical models. Although biomechanics and biophysics have received considerable attention, a comprehensive mechanistic model for modeling infusion-based drug delivery in the brain has yet to be developed. Therefore, this article reviews the state-of-the-art mechanistic studies that can support the development of next-generation models for infusion-based brain drug delivery from the perspective of fluid mechanics, solid mechanics, and mathematical modeling. The supporting techniques and database are also summarized to provide further insights. Finally, the challenges are highlighted and perspectives on future research directions are provided. STATEMENT OF SIGNIFICANCE: Despite the immense potential of infusion-based drug delivery methods for bypassing the blood-brain barrier and efficiently delivering drugs to the brain, achieving optimal drug distribution remains a significant challenge. This is primarily due to our limited understanding of the complex interactions between drugs and the brain that are governed by principles of biophysics and biomechanics, and can be described using mathematical models. This article provides a comprehensive review of state-of-the-art mechanistic studies that can help to unravel the mechanism of drug transport in the brain across the scales, which underpins the development of next-generation models for infusion-based brain drug delivery. More broadly, this review will serve as a starting point for developing more effective treatments for brain diseases and mechanistic models that can be used to study other soft tissue and biomaterials.

2.
Sci Rep ; 14(1): 1999, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263352

ABSTRACT

Several materials and tissues are characterized by a microstructure composed of fibrous units embedded in a ground matrix. In this paper, a novel three-dimensional (3D) Fourier transform-based method for quantifying the distribution of fiber orientations is presented. The method allows for an accurate identification of individual fiber families, their in-plane and out-of-plane dispersion, and showed fast computation times. We validated the method using artificially generated 3D images, in terms of fiber dispersion by considering the error between the standard deviation of the reconstructed and the prescribed distributions of the artificial fibers. In addition, we considered the measured mean orientation angles of the fibers and validated the robustness using a measure of fiber density. Finally, the method is employed to reconstruct a full 3D view of the distribution of collagen fiber orientations based on in vitro second harmonic generation microscopy of collagen fibers in human and mouse skin. The dispersion parameters of the reconstructed fiber network can be used to inform mechanical models of soft fiber-reinforced materials and biological tissues that account for non-symmetrical fiber dispersion.

3.
Sci Rep ; 13(1): 19641, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949949

ABSTRACT

In this study, we propose a novel micromechanical model for the brain white matter, which is described as a heterogeneous material with a complex network of axon fibers embedded in a soft ground matrix. We developed this model in the framework of RVE-based multiscale theories in combination with the finite element method and the embedded element technique for embedding the fibers. Microstructural features such as axon diameter, orientation and tortuosity are incorporated into the model through distributions derived from histological data. The constitutive law of both the fibers and the matrix is described by isotropic one-term Ogden functions. The hyperelastic response of the tissue is derived by homogenizing the microscopic stress fields with multiscale boundary conditions to ensure kinematic compatibility. The macroscale homogenized stress is employed in an inverse parameter identification procedure to determine the hyperelastic constants of axons and ground matrix, based on experiments on human corpus callosum. Our results demonstrate the fundamental effect of axon tortuosity on the mechanical behavior of the brain's white matter. By combining histological information with the multiscale theory, the proposed framework can substantially contribute to the understanding of mechanotransduction phenomena, shed light on the biomechanics of a healthy brain, and potentially provide insights into neurodegenerative processes.


Subject(s)
White Matter , Humans , White Matter/physiology , Mechanotransduction, Cellular , Stress, Mechanical , Brain/physiology , Biomechanical Phenomena , Finite Element Analysis , Models, Biological
4.
J R Soc Interface ; 20(208): 20230472, 2023 11.
Article in English | MEDLINE | ID: mdl-37907092

ABSTRACT

Abdominal aortic aneurysms (AAAs) are a serious condition whose pathophysiology is related to phenomena occurring at different length scales. To gain a better understanding of the disease, this work presents a multi-scale computational study that correlates AAA progression with microstructural and mechanical alterations in the tissue. Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diameter are developed on the basis of existing experimental data and subjected to physiological boundary conditions. Subsequently, microscopic representative volume elements of the abluminal side of each macro-model are employed to analyse the local kinematics at the cellular scale. The results suggest that the formation of the aneurysm disrupts the micromechanics of healthy tissue, which could trigger collagen growth and remodelling by mechanosensing cells. The resulting changes to the macro-mechanics and microstructure of the tissue seem to establish a new homeostatic state at the cellular scale, at least for the diameter range investigated.


Subject(s)
Aortic Aneurysm, Abdominal , Humans , Aorta , Risk Factors , Biomechanical Phenomena , Biophysics , Aorta, Abdominal , Stress, Mechanical , Models, Cardiovascular
5.
J R Soc Interface ; 20(206): 20230318, 2023 09.
Article in English | MEDLINE | ID: mdl-37700713

ABSTRACT

In situ tissue engineering offers an innovative solution for replacement valves and grafts in cardiovascular medicine. In this approach, a scaffold, which can be obtained by polymer electrospinning, is implanted into the human body and then infiltrated by cells, eventually replacing the scaffold with native tissue. In silico simulations of the whole process in patient-specific models, including implantation, growth and degradation, are very attractive to study the factors that might influence the end result. In our research, we focused on the mechanical behaviour of the polymeric scaffold and its short-term response. Following a recently proposed constitutive model for the anisotropic inelastic behaviour of fibrous polymeric materials, we present here its numerical implementation in a finite element framework. The numerical model is developed as user material for commercial finite element software. The verification of the implementation is performed for elementary deformations. Furthermore, a parallel-plate test is proposed as a large-scale representative example, and the model is validated by comparison with experiments.


Subject(s)
Polymers , Tissue Engineering , Humans , Anisotropy , Computer Simulation , Software
6.
Soft Matter ; 19(20): 3629-3639, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37161966

ABSTRACT

The integrity of soft materials against puncturing is of great relevance for their performance because of the high sensitivity to local rupture caused by rigid sharp objects. In this work, the mechanics of puncturing is studied with respect to a sharp-tipped rigid needle with a circular cross section, penetrating a soft target solid. The failure mode associated with puncturing is identified as a mode-I crack propagation, which is analytically described by a two-dimensional model of the target solid, taking place in a plane normal to the penetration axis. It is shown that the force required for the onset of needle penetration is dependent on two energy contributions, that are, the strain energy stored in the target solid and the energy consumed in crack propagation. More specifically, the force is found to be dependent on the fracture toughness of the material, its stiffness and the sharpness of the penetrating tool. The reference case within the framework of small strain elasticity is first investigated, leading to closed-form toughness parameters related to classical linear elastic fracture mechanics. Then, nonlinear finite element analyses for an Ogden hyperelastic material are presented. Supporting the proposed theoretical framework, a series of puncturing experiments on two commercial silicones is presented. The combined experimental-theoretical findings suggest a simple, yet reliable tool to easily handle and assess safety against puncturing of soft materials.

7.
Front Bioeng Biotechnol ; 11: 1143304, 2023.
Article in English | MEDLINE | ID: mdl-37101751

ABSTRACT

Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase. This study focuses on the characterization of these parameters through indentation experiments on a tailor-made polyvinyl alcohol-based hydrogel mimicking brain tissue. The material behavior is adjusted to ex vivo porcine brain tissue. An inverse parameter identification scheme using a trust region reflective algorithm is introduced and applied to match experimental data obtained from the indentation with the proposed computational model. By minimizing the error between experimental values and finite element simulation results, the optimal constitutive model parameters of the brain tissue-mimicking hydrogel are extracted. Finally, the model is validated using the derived material parameters in a finite element simulation.

8.
Biomech Model Mechanobiol ; 19(5): 1809-1825, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32152795

ABSTRACT

Penetration of a flexible and steerable needle into a soft target material is a complex problem to be modelled, involving several mechanical challenges. In the present paper, an adaptive finite element algorithm is developed to simulate the penetration of a steerable needle in brain-like gelatine material, where the penetration path is not predetermined. The geometry of the needle tip induces asymmetric tractions along the tool-substrate frictional interfaces, generating a bending action on the needle in addition to combined normal and shear loading in the region where fracture takes place during penetration. The fracture process is described by a cohesive zone model, and the direction of crack propagation is determined by the distribution of strain energy density in the tissue surrounding the tip. Simulation results of deep needle penetration for a programmable bevel-tip needle design, where steering can be controlled by changing the offset between interlocked needle segments, are mainly discussed in terms of penetration force versus displacement along with a detailed description of the needle tip trajectories. It is shown that such results are strongly dependent on the relative stiffness of needle and tissue and on the tip offset. The simulated relationship between programmable bevel offset and needle curvature is found to be approximately linear, confirming empirical results derived experimentally in a previous work. The proposed model enables a detailed analysis of the tool-tissue interactions during needle penetration, providing a reliable means to optimise the design of surgical catheters and aid pre-operative planning.


Subject(s)
Finite Element Analysis , Needles , Algorithms , Computer Simulation , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...