Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Chem Neuroanat ; 134: 102348, 2023 12.
Article in English | MEDLINE | ID: mdl-37858742

ABSTRACT

OBJECTIVES: Exposure to maternal obesity has been shown to make offspring more prone to cognitive and metabolic disorders later in life. Although the underlying mechanisms are unclear, the role of endoplasmic reticulum (ER) stress in the fetal programming process is remarkable. ER stress can be activated by many chronic diseases, including obesity and diabetes. Therefore, our study aimed to investigate the role of ER stress caused by maternal diet-induced obesity in the offspring hippocampus. We also evaluated the protective effect of N-acetylcysteine (NAC) against ER stress. METHODS: A rat obesity model was created by providing a high-fat (60 % kcal) diet. N-acetylcysteine (NAC) was administered at a dosage of 150 mg/kg via the intragastric route. The animals were mated at the age of 12 weeks. The same diet was maintained during pregnancy and lactation. The experiment was terminated on the postnatal 28th day, and the offspring's brain tissues were examined. Immunohistochemical staining for ER stress markers was performed on sections taken from tissues after routine histological procedures. RESULTS: The results revealed increased GRP78, PERK, and eIF2α immunoreactivities in the hippocampal dentate gyrus (DG) and cornu ammonis 1 (CA1) regions in the obese group offspring, while the expression of those markers in those regions normalized with NAC supplementation (p < 0.01). Statistical analysis of XBP1 immunoreactivity H-scores revealed no difference between the study groups (p > 0.05). DISCUSSION: These results suggest that exposure to obesity during the prenatal period may cause increased ER stress in hippocampal neurons, which have an important role in the regulation of learning, memory and behavior, and this may contribute to decreased cognitive performance. On the other hand, NAC stands out as an effective agent that can counteract hippocampal ER stress.


Subject(s)
Acetylcysteine , Endoplasmic Reticulum Stress , Humans , Rats , Female , Animals , Pregnancy , Infant , Obesity , Endoplasmic Reticulum Chaperone BiP , Hippocampus/metabolism
2.
J Mol Recognit ; 36(11): e3058, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37696682

ABSTRACT

One of the leading causes of acute lung injury, which is linked to a high death rate, is pulmonary fat embolism. Increases in proinflammatory cytokines and the production of free radicals are related to the pathophysiology of acute lung injury. Antioxidants that scavenge free radicals play a protective role against acute lung injury. Gossypin has been proven to have antioxidant, antimicrobial, and anti-inflammatory properties. In this study, we compared the role of Gossypin with the therapeutically used drug Dexamethasone in the acute lung injury model caused by oleic acid in rats. Thirty rats were divided into five groups; Sham, Oleic acid model, Oleic acid+Dexamethasone (0.1 mg/kg), Oleic acid+Gossypin (10 and 20 mg/kg). Two hours after pretreatment with Dexamethasone or Gossypin, the acute lung injury model was created by injecting 1 g/kg oleic acid into the femoral vein. Three hours following the oleic acid injection, rats were decapitated. Lung tissues were extracted for histological, immunohistochemical, biochemical, PCR, and SEM imaging assessment. The oleic acid injection caused an increase in lipid peroxidation and catalase activity, pathological changes in lung tissue, decreased superoxide dismutase activity, and glutathione level, and increased TNF-α, IL-1ß, IL-6, and IL-8 expression. However, these changes were attenuated after treatment with Gossypin and Dexamethasone. By reducing the expression of proinflammatory cytokines and attenuating oxidative stress, Gossypin pretreatment provides a new target that is equally effective as dexamethasone in the treatment of oleic acid-induced acute lung injury.

3.
Fish Physiol Biochem ; 49(3): 441-454, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37097349

ABSTRACT

The major goal of this study was to determine the effect of grape seed extract (GSE) on liver damage in rainbow trout (Oncorhynchus mykiss) that was caused by the consumption of dietary oxidized fish oil (OFO). Rainbow trout were fed six different experimental diets coded OX-GSE 0 (OFO diet), OX-GSE 1 (OFO and 0.1% GSE), OX-GSE 3 (OFO and 0.3% GSE), GSE 0 (fresh fish oil and 0.0% GSE), GSE 1 (fresh fish oil and 0.1% GSE), and GSE 3 (fresh fish oil and 0.3% GSE) for 30 days. The lowest % hepatosomatic index (HSI) result was calculated in fish fed with OX-GSE 0 and the highest HSI was determined in fish fed with GSE 1 diets (p < 0.05). Histopathologically, hydropic degeneration in hepatocytes significantly increased OX-GSE 0 and GSE 3 compared to GSE 1 diets (p < 0.05). Deposition of lipid droplets in hepatocytes was significantly increased in OX-GSE 0 and OX-GSE 3 groups than others (p < 0.05). Liver biochemistry parameters such as superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) were significantly affected by OX and GSE treatments (p < 0.05). There were significant differences in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) among the liver enzymes analyzed in serum in OX and GSE (p < 0.05), meanwhile no difference was observed in lactate dehydrogenase (LDH) values between groups (p > 0.05). In conclusion, liver biochemistry and histopathology of rainbow trout consuming diets containing oxidized fish oil were negatively affected. However, it was determined that the supplementation of 0.1% GSE to the diet had a significant ameliorative role in these adverse effects.


Subject(s)
Grape Seed Extract , Oncorhynchus mykiss , Vitis , Animals , Fish Oils/pharmacology , Antioxidants/pharmacology , Diet/veterinary , Glutathione , Grape Seed Extract/pharmacology , Liver
4.
Mol Neurobiol ; 60(3): 1499-1514, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36502431

ABSTRACT

The children of obese mothers are known to have a high risk of obesity and metabolic disease and are prone to developing cognitive deficits, although the underlying mechanism is not yet fully understood. This study investigated the relationship between neuropeptide Y1 receptor (NPY1R) and anxiety-like behaviors in the hippocampi of male rat offspring exposed to maternal obesity and the potential neuroprotective effects of N-acetylcysteine (NAC). A maternal obesity model was created using a high-fat (60% k/cal) diet. NAC (150 mg/kg) was administered by intragastric gavage for 25 days in both the NAC and obesity + NAC (ObNAC) groups. All male rat offspring were subjected to behavioral testing on postnatal day 28, the end of the experiment. Stereological analysis was performed on hippocampal sections, while NPY1R expression was determined using immunohistochemical methods. Stereological data indicated significant decreases in the total volume of the hippocampus and CA1 and dentate gyrus (DG) regions in the obese (Ob) group (p < 0.01). Decreased NPY1R expression was observed in the Ob group hippocampus (p < 0.01). At behavioral assessments, the Ob group rats exhibited increased anxiety and less social interaction, although the ObNAC group rats exhibited stronger responses than the Ob group (p < 0.01). The study results show that NAC attenuated anxiety-like behaviors and NPY1R expression and also protected hippocampal volume against maternal obesity. The findings indicate that a decrease in NPY1R-positive neurons in the hippocampus of male rats due to maternal conditions may be associated with increased levels of anxiety and a lower hippocampal volume. Additionally, although there is no direct evidence, maintenance of NPY1R expression by NAC may be critical for regulating maternal obesity-induced anxiety-related behaviors and hippocampal structure.


Subject(s)
Acetylcysteine , Obesity, Maternal , Humans , Rats , Animals , Male , Female , Pregnancy , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Diet, High-Fat/adverse effects , Obesity, Maternal/metabolism , Hippocampus/metabolism , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Anxiety/complications
5.
BMC Complement Med Ther ; 22(1): 331, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36514062

ABSTRACT

BACKGROUND: Tacrolimus (FK506) is an immunosuppressive agent and has toxic side effects such as nephrotoxicity, hepatotoxicity, and neurotoxicity. In our study, we aimed to investigate the protective effect of silymarin on renal and hepatic toxicity considered to be tacrolimus related. METHODS: In this 6-week experimental study, 46 eight-week-old healthy male rats were used. The groups comprised the Control (healthy rats, n = 6), Tac (tacrolimus 1 mg/kg, n = 8), silymarin 100 mg/kg (SLI 100 mg/kg n = 8), Tac + SLI 100 (tacrolimus 1 mg/kg + SLI 100 n = 8), SLI 200 (SLI 200 mg/kg n = 8), and Tac + SLI 200 (tacrolimus 1 mg/kg + SLI 200 mg/kg n = 8). After 6 weeks, all rats were sacrificed, and the tissue follow-up procedure was performed for kidney and liver tissues, histopathology, and in situ TUNEL analysis. Blood samples were analyzed for the total antioxidant capacity (TAC), total oxidant capacity (TOC), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), albumin, total bilirubin, creatine. RESULTS: Histopathological findings of kidney and liver tissue of rats were determined to increase statistically in Tac group compared to SLI 1 00 and SLI 200 groups (P < 0.05). In addition, the Tac + SLI 100 and Tac + SLI 200 groups were found to be statistically similar to the Control group (P > 0.05). The in situ TUNEL method showed that the tacrolimus increased apoptosis while the silymarin decreased it. TOC levels increased statistically in Tac groups compared to silymarin-treated groups (P < 0.05). Although the TAC level was not statistically significant among the experimental groups (P > 0.05), the lowest was measured in the Tac group. The ALT, AST, GGT, total bilirubin, and creatine values were higher in the Tac group than in the silymarin groups (P < 0.05). There was no statistically significant difference between the groups with regard to the albumin level (P > 0.05). CONCLUSION: In our study, we determined that tacrolimus caused damage to kidney and liver tissue. Histopathological, biochemical and apoptotic findings show that silymarin has a protective effect against nephrotoxicity and hepatotoxicity caused by tacrolimus.


Subject(s)
Chemical and Drug Induced Liver Injury , Hepatitis , Silymarin , Male , Rats , Animals , Silymarin/pharmacology , Tacrolimus/pharmacology , Creatine/pharmacology , Kidney , Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Bilirubin/pharmacology , Albumins/pharmacology
6.
Respir Res ; 23(1): 249, 2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36115998

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a life-threatening disease caused by the induction of inflammatory cytokines and chemokines in the lungs. There is a dearth of drug applications that can be used to prevent cytokine storms in ARDS treatment. This study was designed to investigate the effects of tocilizumab and dexamethasone on oxidative stress, antioxidant parameters, and cytokine storms in acute lung injury caused by oleic acid in rats. METHODS: Adult male rats were divided into five groups: the CN (healthy rats, n = 6), OA (oleic acid administration, n = 6), OA + TCZ-2 (oleic acid and tocilizumab at 2 mg/kg, n = 6), OA + TCZ-4 (oleic acid and tocilizumab at 4 mg/kg, n = 6), and OA + DEX-10 (oleic acid and dexamethasone at 10 mg/kg, n = 6) groups. All animals were euthanized after treatment for histopathological, immunohistochemical, biochemical, PCR, and SEM analyses. RESULTS: Expressions of TNF-α, IL-1ß, IL-6, and IL-8 cytokines in rats with acute lung injury induced by oleic acid were downregulated in the TCZ and DEX groups compared to the OA group (P < 0.05). The MDA level in lung tissues was statistically lower in the OA + TCZ-4 group compared to the OA group. It was further determined that SOD, GSH, and CAT levels were decreased in the OA group and increased in the TCZ and DEX groups (P < 0.05). Histopathological findings such as thickening of the alveoli, hyperemia, and peribronchial cell infiltration were found to be similar when lung tissues of the TCZ and DEX groups were compared to the control group. With SEM imaging of the lung tissues, it was found that the alveolar lining layer had become indistinct in the OA, OA + TCZ-2, and OA + TCZ-4 groups. CONCLUSIONS: In this model of acute lung injury caused by oleic acid, tocilizumab and dexamethasone were effective in preventing cytokine storms by downregulating the expression of proinflammatory cytokines including TNF-α, IL-1ß, IL-6, and IL-8. Against the downregulation of antioxidant parameters such as SOD and GSH in the lung tissues caused by oleic acid, tocilizumab and dexamethasone upregulated them and showed protective effects against cell damage.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Animals , Antibodies, Monoclonal, Humanized , Antioxidants/adverse effects , Cytokine Release Syndrome , Cytokines/pharmacology , Dexamethasone/pharmacology , Down-Regulation , Interleukin-6 , Interleukin-8 , Lung , Male , Oleic Acid/toxicity , Rats , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/drug therapy , Superoxide Dismutase , Tumor Necrosis Factor-alpha/pharmacology , Up-Regulation
7.
Anat Histol Embryol ; 50(6): 956-964, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34558733

ABSTRACT

In the present study, fish meal (FM) was replaced by pea (Pisum sativum) protein (PP) in diet for Rainbow trout (Oncorhynchus mykiss) at levels of 0% (PP0), 25% (PP25), 50% (PP50), 75% (PP75) and 100% (PP100), and the effect of dietary PP level on the digestive system tracts and liver was investigated by micromorphological and histopathological evaluations. Morphometric measurements (mm 100g fish-1 ) of the liver width and stomach length in rainbow trout were found to be significantly larger (p <0.05) in fish with high-level pea protein as the main protein source (PP75, PP100) compared to the low-level PP replacement group (PP25). No significant differences were found in morphometric measurements for pyloric caecum and intestines among treatment groups, whereas the number of the caecum of fish fed the PP25 diets significantly increased over the control (PP0) (p<0.05). In the histological examination of the liver, mild hydropic and vacuolar degeneration was observed in all experimental groups except PP0 and PP25. The measurements of pyloric caecum fold height, enterocyte length and width of tunica muscularis of the high-level pea protein groups of PP75 and PP100 were significantly higher (p <0.05) compared to the control group. In conclusion, 25% substitution of PP can be suggested for FM in trout diets, because the findings of the present study provided evidence that the digestive system improved by increasing the number of pyloric caecum at this replacement level.


Subject(s)
Oncorhynchus mykiss , Pea Proteins , Animals , Diet/veterinary , Liver
8.
Animals (Basel) ; 11(5)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067650

ABSTRACT

The aim of this study was to detect effects of bitter orange (Citrus aurantium) essential oil, commonly called neroli oil (NO) (0, 0.25, 0.50, 1, and 1.5% referred to as NO0 NO0.25, NO0. 05, NO1 and NO1.5, respectively) on growth performance output and expression levels of some growth-related genes in the muscle tissue and some immune-related genes in the head kidney and pathological differences in digestive system organs of common carp Cyprinus carpio. The NO0.25 group had a large improvement in growth efficiency at the end of the 60-day feeding cycle. Real-time PCR (Bio RAD, USA) system was used to detect variations in gene expression levels. Furthermore, NO supplementation of up to 0.25% in muscle tissue controlled the release of growth hormone (GH) and insulin-like growth factor I (IGF-I). Furthermore, in the NO0.25 treatment category, immune response gene levels TNF-α, IL-8 and IL-1ß increased in head kidney tissue. In the histological examination of the liver and intestine, there were significant differences between fish fed with N1 and N1.5 diets. This study confirms that dietary supplementation of NO up to 0.25% can improve common carp growth efficiency and increase the expression of genes (GH and IGF-I) related to muscle growth, TNF-α, IL-8 and IL-1ß genes related to immune status, and liver and intestine histological status of common carp.

9.
Am J Vet Res ; 81(2): 139-146, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31985285

ABSTRACT

OBJECTIVE: To evaluate the usefulness of intestinal biomarkers in determining the presence of intestinal epithelial damage in neonatal calves with diarrhea caused by 4 etiologic agents. ANIMALS: 40 neonatal calves that were healthy (n = 10) or had diarrhea (30). PROCEDURES: The study was a cross-sectional study. Results of hematologic analyses and serum concentrations of intestinal fatty acid-binding protein (I-FABP), liver fatty acid-binding protein (L-FABP), trefoil factor 3 (TFF-3), Claudin-3 (CLDN-3), γ-enteric smooth muscle actin (ACTG2), intestinal alkaline phosphatase (IAP), interleukin-8 (IL-8), platelet-activating factor (PAF), and leptin (LP) were compared among calves grouped according to whether they were healthy (control group; G-1) or had diarrhea caused by K99 Escherichia coli (G-2; n = 10), bovine rota- or coronavirus (G-3; 5 each), or Cryptosporidium spp (G-4; 10). RESULTS: Across the 3 time points at which blood samples were obtained and evaluated, the groups of calves with diarrhea generally had markedly higher mean serum concentrations of L-FABP, TFF-3, IAP, IL-8, and LP, compared with the control group. In addition, G-2 also consistently had markedly higher mean serum concentrations of I-FAB and ACTG2 and lower mean serum concentrations of CLDN-3, compared with the control group. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that degree of intestinal epithelial damage differed among calves grouped by the etiologic agent of diarrhea and that such damage might have been more severe in calves with diarrhea caused by K99 E coli. Additionally, our results indicated that serum concentrations of I-FABP, L-FABP, TFF-3, IAP, IL-8, ACTG2, LP, and CLDN-3 were useful biomarkers of intestinal epithelial damage in calves of the present study.


Subject(s)
Cattle Diseases , Cryptosporidiosis , Cryptosporidium , Animals , Biomarkers , Cattle , Cross-Sectional Studies , Diarrhea/veterinary , Escherichia coli , Feces , Infant, Newborn , Intestines
10.
J Vet Res ; 62(4): 439-445, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30729200

ABSTRACT

INTRODUCTION: The aim of this study was to determine the predisposing effect of bovine respiratory syncytial virus (BRSV) on Pasteurella spp. infection in naturally-induced pneumonia in cattle by immunohistochemical labelling. MATERIAL AND METHODS: Lungs of cattle slaughtered in the slaughterhouse were examined macroscopically, and 100 pneumonic samples were taken. The samples were fixed in 10% neutral formalin and embedded in paraffin by routine methods. Sections 5 µm in thickness were cut. The streptavidin-peroxidase method (ABC) was used to stain the sections for immuno-histochemical examination. RESULTS: BRSV antigens were found in the cytoplasm of epithelial cells of bronchi, bronchioles, and alveoles and within inflammatory cell debris and inflammatory exudate in bronchial lumens. Pasteurella spp. antigens were detected in the cytoplasm of the epithelial cells of bronchi and bronchioles, and in cells in the lumens of bronchi and bronchioles. Eleven cases were positive for only one pathogen (six for BRSV and five for Pasteurella spp.), while 35 cases were positive for 2 pathogens: BRSV plus P. multocida (n = 21) or M. haemolytica (n = 14). CONCLUSION: The presence of high levels of BRSV in dual infections indicates that BSRV may be the main pneumonia-inducing agent and an important predisposing factor for the formation of Pasteurella spp. infections in cattle naturally afflicted with pneumonia.

SELECTION OF CITATIONS
SEARCH DETAIL
...