Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Comput Aided Mol Des ; 37(8): 395-405, 2023 08.
Article in English | MEDLINE | ID: mdl-37365370

ABSTRACT

The SAMPL8 blind prediction challenge, which addresses the acid/base dissociation constants (pKa) and the distribution coefficients (logD), was addressed by the Conductor like Screening Model for Realistic Solvation (COSMO-RS). Using the COSMOtherm implementation of COSMO-RS together with a rigorous conformational sampling, yielded logD predictions with a root mean square deviation (RMSD) of 1.36 log units over all 11 compounds and seven bi-phasic systems of the data set, which was the most accurate of all contest submissions (logD).For the SAMPL8 pKa competition, participants were asked to report the standard state free energies of all microstates, which were then used to calculate the macroscopic pKa. We have used COSMO-RS based linear free energy fit models to calculate the requested energies. The assignment of the calculated and experimental pKa values was made on the basis of the popular transitions, i.e. the transition hat was predicted by the majority of the submissions. With this assignment and a model that covers both, pKa and base pKa, we achieved an RMSD of 3.44 log units (18 pKa values of 14 molecules), which is the second place of the six ranked submissions. By changing to an assignment that is based on the experimental transition curves, the RMSD reduces to 1.65. In addition to the ranked contribution, we submitted two more data sets, one for the standard pKa model and one or the standard base pKa model of COSMOtherm. Using the experiment based assignment with the predictions of the two sets we received a RMSD of 1.42 log units (25 pKa values of 20 molecules). The deviation mainly arises from a single outlier compound, the omission of which leads to an RMSD of 0.89 log units.


Subject(s)
Water , Humans , Thermodynamics , Molecular Conformation
2.
Phys Chem Chem Phys ; 21(18): 9225-9238, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30994133

ABSTRACT

During the past 20 years, the efficient combination of quantum chemical calculations with statistical thermodynamics by the COSMO-RS method has become an important alternative to force-field based simulations for the accurate prediction of free energies of molecules in liquid systems. While it was originally restricted to homogeneous liquids, it later has been extended to the prediction of the free energy of molecules in inhomogeneous systems such as micelles, biomembranes, or liquid interfaces, but these calculations were based on external input about the structure of the inhomogeneous system. Here we report the rigorous extension of COSMO-RS to a self-consistent prediction of the structure and the free energies of molecules in self-organizing inhomogeneous systems. This extends the application range to many new areas, such as the prediction of micellar structures and critical micelle concentrations, finite loading effects in micelles and biomembranes, the free energies and structure of liquid interfaces, microemulsions, and many more related topics, which often are of great practical importance.

SELECTION OF CITATIONS
SEARCH DETAIL
...