Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 73: 116986, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36208545

ABSTRACT

Inhibitors of gamma-glutamyl transpeptidase (GGT1, aka gamma-glutamyl transferase) are needed for the treatment of cancer, cardiovascular illness and other diseases. Compounds that inhibit GGT1 have been evaluated in the clinic, but no inhibitor has successfully demonstrated specific and systemic GGT1 inhibition. All have severe side effects. L-2-amino-4­boronobutanoic acid (l-ABBA), a glutamate analog, is the most potent GGT1 inhibitor in vitro. In this study, we have solved the crystal structure of human GGT1 (hGGT1) with ABBA bound in the active site. The structure was interrogated to identify interactions between the enzyme and the inhibitor. Based on these data, a series of novel ABBA analogs were designed and synthesized. Their inhibitory activity against the hydrolysis and transpeptidation activities of hGGT1 were determined. The lead compounds were crystalized with hGGT1 and the structures solved. The kinetic data and structures of the complexes provide new insights into the critical role of protein structure dynamics in developing compounds for inhibition of hGGT1.


Subject(s)
Boron Compounds , gamma-Glutamyltransferase , Catalytic Domain , Glutamic Acid , Humans , gamma-Glutamyltransferase/metabolism
2.
J Biol Chem ; 296: 100066, 2021.
Article in English | MEDLINE | ID: mdl-33187988

ABSTRACT

Overexpression of γ-glutamyl transpeptidase (GGT1) has been implicated in an array of human diseases including asthma, reperfusion injury, and cancer. Inhibitors are needed for therapy, but development of potent, specific inhibitors of GGT1 has been hampered by a lack of structural information regarding substrate binding and cleavage. To enhance our understanding of the molecular mechanism of substrate cleavage, we have solved the crystal structures of human GGT1 (hGGT1) with glutathione (a substrate) and a phosphate-glutathione analog (an irreversible inhibitor) bound in the active site. These are the first structures of any eukaryotic GGT with the cysteinylglycine region of the substrate-binding site occupied. These structures and the structure of apo-hGGT reveal movement of amino acid residues within the active site as the substrate binds. Asn-401 and Thr-381 each form hydrogen bonds with two atoms of GSH spanning the γ-glutamyl bond. Three different atoms of hGGT1 interact with the carboxyl oxygen of the cysteine of GSH. Interactions between the enzyme and substrate change as the substrate moves deeper into the active site cleft. The substrate reorients and a new hydrogen bond is formed between the substrate and the oxyanion hole. Thr-381 is locked into a single conformation as an acyl bond forms between the substrate and the enzyme. These data provide insight on a molecular level into the substrate specificity of hGGT1 and provide an explanation for seemingly disparate observations regarding the enzymatic activity of hGGT1 mutants. This knowledge will aid in the design of clinically useful hGGT1 inhibitors.


Subject(s)
Dipeptides/metabolism , Enzyme Inhibitors/metabolism , gamma-Glutamyltransferase/antagonists & inhibitors , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Dipeptides/chemistry , Humans , Models, Molecular , Protein Conformation , gamma-Glutamyltransferase/chemistry , gamma-Glutamyltransferase/metabolism
3.
J Inflamm Res ; 13: 1261-1278, 2020.
Article in English | MEDLINE | ID: mdl-33408499

ABSTRACT

BACKGROUND: Non-steroidal anti-inflammatory drugs, cyclooxygenase (COX)-2 selective inhibitors, have been explored for prevention and treatment of several inflammatory chronic conditions including arthritis, and cancer. However, the long-term use of these drugs is associated with gastrointestinal, renal, and cardiovascular side effects. Later, COX/5-lipoxygenase (5-LOX) dual inhibitors (eg, licofelone) have been developed but did not enter into the market from the clinical trails due to COX-1/2 inhibition-associated side effects. Hence, targeting microsomal prostaglandin E synthase-1 (mPGES-1) and 5-LOX can be an ideal approach while sparing COX-1/2 activities for development of the next generation of anti-inflammatory drugs with better efficacy and safety. MATERIALS AND METHODS: In silico (molecular modelling) studies were used to design a mPGES-1/5-LOX dual inhibitory and COX-1/2 sparing lead molecule licofelone analogue-9 (LFA-9) by modifying the pharmacophore of licofelone. In vitro cell-free enzymatic (mPGES-1, 5-LOX, COX-1/2) assays using fluorometric/colorimetric methods and cell-based assays (LPS-induced PGE2, LTB4, and PGI2 productions from macrophages) using ELISA technique, isothermal calorimetry, and circular dichroism techniques were performed to determine the mPGES-1/5-LOX inhibitory efficacy and selectivity. Anti-inflammatory efficacy of LFA-9 was evaluated using a carrageenan (inflammogen)-induced rat paw edema model. Infiltration/expression of CD68 immune cells and TNF-α in paw tissues were evaluated using confocal microscope and immunoblot analysis. Anti-cancer effect of LFA-9 was evaluated using colon spheroids in vitro. RESULTS: LFA-9 inhibited mPGES-1/5-LOX and their products PGE2 and LTB4, spared COX-1/2 and its product PGI2. LFA-9 bound strongly with human mPGES-1/5-LOX enzymes and induced changes in their secondary structure, thereby inhibited their enzymatic activities. LFA-9 inhibited carrageenan-induced inflammation (70.4%) in rats and suppressed CD68 immune cell infiltration (P ≤ 0.0001) and TNF-α expression. LFA-9 suppressed colon tumor stemness (60.2%) in vitro through inhibition of PGE2 (82%) levels. CONCLUSION: Overall study results suggest that LFA-9 is a mPGES-1/5-LOX dual inhibitor and showed anti-inflammatory and colorectal cancer preventive activities, and warranted detailed studies.

4.
J Biol Chem ; 294(27): 10428-10437, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31118272

ABSTRACT

RET is a transmembrane growth factor receptor. Aberrantly activated RET is found in several types of human cancer and is a target for treating RET aberration-associated cancer. Multiple clinically relevant RET protein-tyrosine kinase inhibitors (TKIs) have been identified, but how TKIs bind to RET is unknown except for vandetanib. Nintedanib is a RET TKI that inhibits the vandetanib-resistant RET(G810A) mutant. Here, we determined the X-ray co-crystal structure of RET kinase domain-nintedanib complex to 1.87 Å resolution and a RET(G810A) kinase domain crystal structure to 1.99 Å resolution. We also identified a vandetanib-resistant RET(L881V) mutation previously found in familial medullary thyroid carcinoma. Drug-sensitivity profiling of RET(L881V) revealed that it remains sensitive to nintedanib. The RET-nintedanib co-crystal structure disclosed that Leu-730 in RET engages in hydrophobic interactions with the piperazine, anilino, and phenyl groups of nintedanib, providing a structural basis for explaining that the p.L730V mutation identified in nine independently isolated cell lines resistant to nintedanib. Comparisons of RET-nintedanib, RET(G810A), and RET-vandetanib crystal structures suggested that the solvent-front Ala-810 makes hydrophobic contacts with a methyl group and aniline in nintedanib and blocks water access to two oxygen atoms of vandetanib, resulting in an energetic penalty for burying polar groups. Of note, even though the p.L881V mutation did not affect sensitivity to nintedanib, RET(L881V) was resistant to nintedanib analogs lacking a phenyl group. These results provide structural insights into resistance of RET mutants against the TKIs nintedanib and vandetanib.


Subject(s)
Indoles/chemistry , Piperidines/chemistry , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-ret/chemistry , Quinazolines/chemistry , Animals , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Drug Resistance, Neoplasm , Humans , Hydrophobic and Hydrophilic Interactions , Indoles/metabolism , Mice , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Piperidines/metabolism , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , Quinazolines/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
5.
Protein Sci ; 26(6): 1196-1205, 2017 06.
Article in English | MEDLINE | ID: mdl-28378915

ABSTRACT

Intense efforts are underway to identify inhibitors of the enzyme gamma-glutamyl transpeptidase 1 (GGT1) which cleaves extracellular gamma-glutamyl compounds and contributes to the pathology of asthma, reperfusion injury and cancer. The glutamate analog, 6-diazo-5-oxo-norleucine (DON), inhibits GGT1. DON also inhibits many essential glutamine metabolizing enzymes rendering it too toxic for use in the clinic as a GGT1 inhibitor. We investigated the molecular mechanism of human GGT1 (hGGT1) inhibition by DON to determine possible strategies for increasing its specificity for hGGT1. DON is an irreversible inhibitor of hGGT1. The second order rate constant of inactivation was 0.052 mM-1 min-1 and the Ki was 2.7 ± 0.7 mM. The crystal structure of DON-inactivated hGGT1 contained a molecule of DON without the diazo-nitrogen atoms in the active site. The overall structure of the hGGT1-DON complex resembled the structure of the apo-enzyme; however, shifts were detected in the loop forming the oxyanion hole and elements of the main chain that form the entrance to the active site. The structure of hGGT1-DON complex revealed two covalent bonds between the enzyme and inhibitor which were part of a six membered ring. The ring included the OG atom of Thr381, the reactive nucleophile of hGGT1 and the α-amine of Thr381. The structure of DON-bound hGGT1 has led to the discovery of a new mechanism of inactivation by DON that differs from its inactivation of other glutamine metabolizing enzymes, and insight into the activation of the catalytic nucleophile that initiates the hGGT1 reaction.


Subject(s)
Diazooxonorleucine/chemistry , Enzyme Inhibitors/chemistry , gamma-Glutamyltransferase/antagonists & inhibitors , gamma-Glutamyltransferase/chemistry , Catalytic Domain , Crystallography, X-Ray , Humans , Protein Structure, Secondary
6.
J Biol Chem ; 292(6): 2510-2518, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28011641

ABSTRACT

Selectin interactions with fucosylated glycan ligands mediate leukocyte rolling in the vasculature under shear forces. Crystal structures of P- and E-selectin suggest a two-state model in which ligand binding to the lectin domain closes loop 83-89 around the Ca2+ coordination site, enabling Glu-88 to engage Ca2+ and fucose. This triggers further allostery that opens the lectin/EGF domain hinge. The model posits that force accelerates transition from the bent (low affinity) to the extended (high affinity) state. However, transition intermediates have not been described, and the role of Glu-88 in force-assisted allostery has not been examined. Here we report the structure of the lectin and EGF domains of L-selectin bound to a fucose mimetic; that is, a terminal mannose on an N-glycan attached to a symmetry-related molecule. The structure is a transition intermediate where loop 83-89 closes to engage Ca2+ and mannose without triggering allostery that opens the lectin/EGF domain hinge. We used three complementary assays to compare ligand binding to WT selectins and to E88D selectins that replaced Glu-88 with Asp. Soluble P-selectinE88D bound with an ∼9-fold lower affinity to PSGL-1, a physiological ligand, due to faster dissociation. Adhesion frequency experiments with a biomembrane force probe could not detect interactions of P-selectinE88D with PSGL-1. Cells expressing transmembrane P-selectinE88D or L-selectinE88D detached from immobilized ligands immediately after initiating flow. Cells expressing E-selectinE88D rolled but detached faster. Our data support a two-state model for selectins in which Glu-88 must engage ligand to trigger allostery that stabilizes the high affinity state under force.


Subject(s)
Glutamic Acid/metabolism , L-Selectin/metabolism , Polysaccharides/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Crystallography, X-Ray , Humans , L-Selectin/chemistry , Membrane Glycoproteins/metabolism , Protein Conformation
7.
J Biol Chem ; 290(28): 17576-86, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26013825

ABSTRACT

γ-Glutamyl transpeptidase 1 (GGT1) is a cell surface, N-terminal nucleophile hydrolase that cleaves glutathione and other γ-glutamyl compounds. GGT1 expression is essential in cysteine homeostasis, and its induction has been implicated in the pathology of asthma, reperfusion injury, and cancer. In this study, we report four new crystal structures of human GGT1 (hGGT1) that show conformational changes within the active site as the enzyme progresses from the free enzyme to inhibitor-bound tetrahedral transition states and finally to the glutamate-bound structure prior to the release of this final product of the reaction. The structure of the apoenzyme shows flexibility within the active site. The serine-borate-bound hGGT1 crystal structure demonstrates that serine-borate occupies the active site of the enzyme, resulting in an enzyme-inhibitor complex that replicates the enzyme's tetrahedral intermediate/transition state. The structure of GGsTop-bound hGGT1 reveals its interactions with the enzyme and why neutral phosphonate diesters are more potent inhibitors than monoanionic phosphonates. These structures are the first structures for any eukaryotic GGT that include a molecule in the active site covalently bound to the catalytic Thr-381. The glutamate-bound structure shows the conformation of the enzyme prior to release of the final product and reveals novel information regarding the displacement of the main chain atoms that form the oxyanion hole and movement of the lid loop region when the active site is occupied. These data provide new insights into the mechanism of hGGT1-catalyzed reactions and will be invaluable in the development of new classes of hGGT1 inhibitors for therapeutic use.


Subject(s)
gamma-Glutamyltransferase/chemistry , Aminobutyrates/chemistry , Aminobutyrates/pharmacology , Apoenzymes/chemistry , Catalysis , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glutamic Acid/metabolism , Humans , Models, Molecular , Organophosphonates/chemistry , Organophosphonates/pharmacology , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , gamma-Glutamyltransferase/antagonists & inhibitors , gamma-Glutamyltransferase/genetics
8.
Biochem J ; 450(3): 547-57, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23301618

ABSTRACT

GGT (γ-glutamyl transpeptidase) is an essential enzyme for maintaining cysteine homoeostasis, leukotriene synthesis, metabolism of glutathione conjugates and catabolism of extracellular glutathione. Overexpression of GGT has been implicated in many pathologies, and clinical inhibitors of GGT are under development for use in the treatment of asthma, cancer and other diseases. Inhibitors are generally characterized using synthetic GGT substrates. The present study of uncompetitive inhibitors of GGT, has revealed that the potency with which compounds inhibit GGT activity in the standard biochemical assay does not correlate with the potency with which they inhibit the physiological reaction catalysed by GGT. Kinetic studies provided insight into the mechanism of inhibition. Modifications to the sulfobenzene or distal benzene ring of the uncompetitive inhibitor OU749 affected activity. One of the most potent inhibitors was identified among a novel group of analogues with an amine group para on the benzosulfonamide ring. New more potent uncompetitive inhibitors of the physiological GGT reaction were found to be less toxic than the glutamine analogues that have been tested clinically. Development of non-toxic inhibitors is essential for exploiting GGT as a therapeutic target.


Subject(s)
Drug Design , Enzyme Inhibitors/pharmacology , gamma-Glutamyltransferase/antagonists & inhibitors , gamma-Glutamyltransferase/metabolism , Animals , Binding, Competitive/drug effects , Cells, Cultured , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Glutathione/metabolism , Humans , Mice , Models, Biological , NIH 3T3 Cells , Protein Binding , Substrate Specificity , Sulfonamides/pharmacology , Thiadiazoles/pharmacology
9.
J Med Chem ; 55(21): 9195-207, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-22954357

ABSTRACT

The structure-based design, synthesis, and X-ray structure of protein-ligand complexes of exceptionally potent and selective ß-secretase inhibitors are described. The inhibitors are designed specifically to interact with S(1)' active site residues to provide selectivity over memapsin 1 and cathepsin D. Inhibitor 5 has exhibited exceedingly potent inhibitory activity (K(i) = 17 pM) and high selectivity over BACE 2 (>7000-fold) and cathepsin D (>250000-fold). A protein-ligand crystal structure revealed important molecular insight into these selectivities. These interactions may serve as an important guide to design selectivity over the physiologically important aspartic acid proteases.


Subject(s)
Amides/chemical synthesis , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Indoles/chemical synthesis , Phthalic Acids/chemical synthesis , Sulfonamides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Cell Line, Tumor , Cell Membrane Permeability , Crystallography, X-Ray , Drug Design , Humans , Indoles/chemistry , Indoles/pharmacology , Ligands , Models, Molecular , Molecular Structure , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology
10.
Mol Immunol ; 50(4): 185-92, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22336572

ABSTRACT

We have previously reported accelerated acquisition of new autoreactivity upon immunization with 4-hydroxy-2-nonenal (HNE)-modified Ro60, as well as differential induction of lupus or Sjögren's syndrome by immunization with Ro60 containing varying amounts of HNE. Since the number of HNE molecules on Ro60 appears to be important, we hypothesized that specific sequences on Ro60 are targets for HNE-modification. Using surface plasmon resonance (SPR) we have also shown intramolecular protein-protein interaction between Ro60 and Ro multiple antigenic peptides (MAPs). We also hypothesized that intramolecular protein-protein interaction would be abolished by HNE-modification. To test this hypotheses we investigated (a) the epitopes of Ro60, using 19 Ro MAPs in an in vitro assay (involving HNE-modification of MAPs following immobilization on ELISA plates) to identify targets of HNE modification on Ro60 and (b) the protein-protein interaction between unmodified Ro60 MAPs, immobilized on the sensor surface of BIAcore, and unmodified Ro60 or HNE-modified Ro60 using SPR. New data obtained with SPR strengthens our earlier observation that immunization with HNE-Ro60 induces a stronger response. Unmodified Ro60 bound to several Ro60 MAPs through protein-protein interaction analyzed using SPR. This interaction was totally abrogated using HNE-modified Ro60 suggesting that sequences on Ro had become modified with HNE. When 19 Ro60 MAPs were modified in vitro with HNE, it was found that 10/19 MAPs significantly bound HNE covalently (p<0.001 compared to MAPs binding HNE poorly). The amino acid sequences 126-137, 166-272 and 401-495 on Ro60 were strongly HNE modified. Using computational model system based on the recently published crystal structure for Ro60 enabled us to identify regions on the Ro60 molecule represented by the HNE-modified Ro MAPs, which are part of the exposed tertiary structure of the Ro60 protein.


Subject(s)
Aldehydes/chemistry , Aldehydes/immunology , Autoantigens/chemistry , Autoantigens/immunology , Ribonucleoproteins/chemistry , Ribonucleoproteins/immunology , Amino Acid Sequence , Animals , Autoantibodies/blood , Autoantibodies/immunology , Cattle , Cross-Linking Reagents/chemistry , Epitopes, B-Lymphocyte/immunology , Lupus Erythematosus, Systemic/immunology , Molecular Sequence Data , Protein Structure, Secondary , Rabbits , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Surface Plasmon Resonance
11.
Appl Microbiol Biotechnol ; 94(4): 1041-9, 2012 May.
Article in English | MEDLINE | ID: mdl-22270239

ABSTRACT

The metalloprotease activity of lethal factor (LF) from Bacillus anthracis (B. anthracis) is a main source of toxicity in the lethality of anthrax infection. Thus, the understanding of the enzymatic activity and inhibition of B. anthracis LF is of scientific and clinical interests. We have designed, synthesized, and studied a peptide inhibitor of LF, R9LF-1, with the structure NH(2)-(D: -Arg)(9)-Val-Leu-Arg-CO-NHOH in which the C-terminal hydroxamic acid is commonly used in the inhibitors of metalloproteases to chelate the active-site zinc. This inhibitor was shown to be very stable in solution and effectively inhibited LF in kinetic assays. However, its protection on murine macrophages against lethal toxin's lysis activity was relatively weak in longer assays. We further observed that the hydroxamic acid group in R9LF-1 was hydrolyzed by LF, and the hydrolytic product of this inhibitor is considerably weaker in inhibition of potency. To resist this unique hydrolytic activity of LF, we further designed a new inhibitor R9LF-2 which contained the same structure as R9LF-1 except replacing the hydroxamic acid group with N,O-dimethyl hydroxamic acid (DMHA), -N(CH(3))-O-CH(3). R9LF-2 was not hydrolyzed by LF in long-term incubation. It has a high inhibitory potency vs. LF with an inhibition constant of 6.4 nM had a better protection of macrophages against LF toxicity than R9LF-1. These results suggest that in the development of new LF inhibitors, the stability of the chelating group should be carefully examined and that DMHA is a potentially useful moiety to be used in new LF inhibitors.


Subject(s)
Antitoxins/metabolism , Bacterial Toxins/antagonists & inhibitors , Chelating Agents/metabolism , Hydroxamic Acids/metabolism , Animals , Antigens, Bacterial , Cells, Cultured , Kinetics , Macrophages/drug effects , Mice , Peptides/metabolism , Protease Inhibitors/metabolism
12.
Biochemistry ; 50(24): 5544-54, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21574570

ABSTRACT

Mammalian type B (mitochondrial) b(5) cytochromes exhibit greater amino acid sequence diversity than their type A (microsomal) counterparts, as exemplified by the type B proteins from human (hCYB5B) and rat (rCYB5B). The comparison of X-ray crystal structures of hCYB5B and rCYB5B reported herein reveals a striking difference in packing involving the five-strand ß-sheet, which can be attributed to fully buried residue 21 in strand ß4. The greater bulk of Leu21 in hCYB5B in comparison to that of Thr21 in rCYB5B results in a substantial displacement of the first two residues in ß5, and consequent loss of two of the three hydrogen bonds between ß5 and ß4. Hydrogen bonding between the residues is instead mediated by two well-ordered, fully buried water molecules. In a 10 ns molecular dynamics simulation, one of the buried water molecules in the hCYB5B structure exchanged readily with solvent via intermediates having three water molecules sandwiched between ß4 and ß5. When the buried water molecules were removed prior to a second 10 ns simulation, ß4 and ß5 formed persistent hydrogen bonds identical to those in rCYB5B, but the Leu21 side chain was forced to adopt a rarely observed conformation. Despite the apparently greater ease of access of water to the interior of hCYB5B than of rCYB5B suggested by these observations, the two proteins exhibit virtually identical stability, dynamic, and redox properties. The results provide new insight into the factors stabilizing the cytochrome b(5) fold.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/genetics , Cytochromes b5/chemistry , Cytochromes b5/genetics , Hemeproteins/chemistry , Hemeproteins/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Crystallography, X-Ray , Enzyme Stability , Heme-Binding Proteins , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Oxidation-Reduction , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Homology, Amino Acid , Species Specificity , Water/chemistry
13.
Biochem Biophys Res Commun ; 407(2): 400-5, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21396916

ABSTRACT

The lethal factor of Bacillus anthracis is a major factor for lethality of anthrax infection by this bacterium. With the aid of the protective antigen, lethal factor gains excess to the cell cytosol where it manifests toxicity as a metalloprotease. For better understanding of its specificity, we have determined its residue preferences of 19 amino acids in six subsites (from P3 to P3') as relative k(cat)/K(m) values (specificity constants). These results showed that lethal factor has a broad specificity with preference toward hydrophobic residues, but not charged or branched residues. The most preferred residues in these six subsites are, from P1 to P3', Trp, Leu, Met, Tyr, Pro, and Leu. The result of residue preference was used to design new substrates with superior hydrolytic characteristics and inhibitors with high potency. For better use of the new findings for inhibitor design, we have modeled the most preferred residues in the active site of lethal factor. The observed interactions provide new insights to future inhibitor designs.


Subject(s)
Anti-Bacterial Agents/chemistry , Antigens, Bacterial/chemistry , Bacterial Toxins/antagonists & inhibitors , Bacterial Toxins/chemistry , Drug Design , Protease Inhibitors/chemistry , Anti-Bacterial Agents/pharmacology , Hydrophobic and Hydrophilic Interactions , Protease Inhibitors/pharmacology , Substrate Specificity
14.
Infect Immun ; 77(11): 4714-23, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19720758

ABSTRACT

Anthrax lethal and edema toxins (LeTx and EdTx, respectively) form by binding of lethal factor (LF) or edema factor (EF) to the pore-forming moiety protective antigen (PA). Immunity to LF and EF protects animals from anthrax spore challenge and neutralizes anthrax toxins. The goal of the present study is to identify linear B-cell epitopes of EF and to determine the relative contributions of cross-reactive antibodies of EF and LF to LeTx and EdTx neutralization. A/J mice were immunized with recombinant LF (rLF) or rEF. Pools of LF or EF immune sera were tested for reactivity to rLF or rEF by enzyme-linked immunosorbent assays, in vitro neutralization of LeTx and EdTx, and binding to solid-phase LF and EF decapeptides. Cross-reactive antibodies were isolated by column absorption of EF-binding antibodies from LF immune sera and by column absorption of LF-binding antibodies from EF immune sera. The resulting fractions were subjected to the same assays. Major cross-reactive epitopes were identified as EF amino acids (aa) 257 to 268 and LF aa 265 to 274. Whole LF and EF immune sera neutralized LeTx and EdTx, respectively. However, LF sera did not neutralize EdTx, nor did EF sera neutralize LeTx. Purified cross-reactive immunoglobulin G also failed to cross-neutralize. Cross-reactive B-cell epitopes in the PA-binding domains of whole rLF and rEF occur and have been identified; however, the major anthrax toxin-neutralizing humoral responses to these antigens are constituted by non-cross-reactive epitopes. This work increases understanding of the immunogenicity of EF and LF and offers perspective for the development of new strategies for vaccination against anthrax.


Subject(s)
Anthrax Vaccines/immunology , Antibody Specificity/immunology , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Bacterial Toxins/immunology , Epitopes, B-Lymphocyte/immunology , Animals , Anthrax/immunology , Anthrax/prevention & control , Anthrax Vaccines/genetics , Antibodies/immunology , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte/genetics , Female , Mice , Neutralization Tests , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology
15.
Biochemistry ; 48(23): 5149-58, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19402713

ABSTRACT

Circulating antiplasmin-cleaving enzyme (APCE), a prolyl-specific serine proteinase, is essentially identical to membrane-inserted fibroblast activation protein (FAP) that is transiently expressed during epithelial-derived cancer growth. Human precursive alpha(2)-antiplasmin (Met-alpha(2)AP), the only known physiologic substrate for APCE, is cleaved N-terminally to Asn-alpha(2)AP that is rapidly cross-linked to fibrin and protects it from digestion by plasmin. Identifying a specific inhibitor of APCE/FAP continues to be intensely pursued. Recombinant FAP cleavage of peptide libraries of short amino acid sequences surrounding the scissile bond, -Pro(12)-Asn(13)-, indicated that P2 Gly and P1 Pro are required, just as we found for APCE. We examined cleavage of P4-P4' peptides, using 19 amino acid substitutions at each position and selected ones in P8-P5. K(m) values determined for peptide substrates showed that P7 Arg has the highest affinity for APCE. Peptide cleavage rate increased with Arg in P6 rather than P5 or native P7. Placing Arg in P4 or P8 reduced cleavage rates dramatically. Cleavage of substrates with extended peptide sequences before or after the scissile bond showed endopeptidase to be superior to dipeptidase activity for APCE. A substrate analogue inhibitor, Phe-Arg-(8-amino-3,6-dioxaoctanoic acid)-Gly-[r]-fluoropyrrolidide, inhibited APCE with a K(i) of 54 microM but not dipeptidyl peptidase IV even at 2 mM. The inhibitor also blocked cleavage of Met-alpha(2)AP with an IC(50) of 91 microM. Replacing Arg with Gly at the same distance from fluoropyrrolidide as P7 Arg is from P1 Pro reduced its inhibition of APCE approximately 10-fold. Results indicate that Arg at P5, P6, or P7 distances from P1 enhances affinity and efficiency of substrates or inhibitors toward APCE or FAP.


Subject(s)
Gelatinases/antagonists & inhibitors , Membrane Proteins/antagonists & inhibitors , Serine Endopeptidases/chemistry , Amino Acid Sequence , Binding Sites , Endopeptidases/metabolism , Fibroblasts/metabolism , Gelatinases/metabolism , Humans , Hydrolysis , Kinetics , Membrane Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Protein Conformation , Serine Endopeptidases/metabolism , Structure-Activity Relationship , Substrate Specificity , alpha-2-Antiplasmin/genetics , alpha-2-Antiplasmin/metabolism
16.
Biochem Biophys Res Commun ; 360(3): 690-5, 2007 Aug 31.
Article in English | MEDLINE | ID: mdl-17617379

ABSTRACT

Anthrax toxin consists of three components: the enzymatic moieties edema factor (EF) and the lethal factor (LF) and the receptor-binding moiety protective antigen (PA). These toxin components are released from Bacillus anthracis as unassociated proteins and form complexes on the surface of host cells after proteolytic processing of PA into PA20 and PA63. The sequential order of PA heptamerization and ligand binding, as well as the exact mechanism of anthrax toxin entry into cells, are still unclear. In the present study, we provide direct evidence that PA63 monomers are sufficient for binding to the full length LF or its LF-N domain, though with lower affinity with the latter. Therefore, PA oligomerization is not a necessary condition for LF/PA complex formation. In addition, we demonstrated that the PA20 directly interacts with the LF-N domain. Our data points to an alternative process of self-assembly of anthrax toxin on the surface of host cells.


Subject(s)
Antigens, Bacterial/chemistry , Bacterial Toxins/chemistry , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Dimerization , Electrophoresis, Polyacrylamide Gel , Mutagenesis, Site-Directed , Protein Binding/genetics , Protein Structure, Tertiary/genetics , Protein Structure, Tertiary/physiology
17.
EMBO J ; 26(14): 3484-93, 2007 Jul 25.
Article in English | MEDLINE | ID: mdl-17581628

ABSTRACT

APPL1 is an effector of the small GTPase Rab5. Together, they mediate a signal transduction pathway initiated by ligand binding to cell surface receptors. Interaction with Rab5 is confined to the amino (N)-terminal region of APPL1. We report the crystal structures of human APPL1 N-terminal BAR-PH domain motif. The BAR and PH domains, together with a novel linker helix, form an integrated, crescent-shaped, symmetrical dimer. This BAR-PH interaction is likely conserved in the class of BAR-PH containing proteins. Biochemical analyses indicate two independent Rab-binding sites located at the opposite ends of the dimer, where the PH domain directly interacts with Rab5 and Rab21. Besides structurally supporting the PH domain, the BAR domain also contributes to Rab binding through a small surface region in the vicinity of the PH domain. In stark contrast to the helix-dominated, Rab-binding domains previously reported, APPL1 PH domain employs beta-strands to interact with Rab5. On the Rab5 side, both switch regions are involved in the interaction. Thus we identified a new binding mode between PH domains and small GTPases.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing , Binding Sites , Crystallography, X-Ray , DNA Mutational Analysis , Dimerization , Humans , Models, Molecular , Protein Binding , Protein Structure, Tertiary , Solutions , Static Electricity , rab GTP-Binding Proteins/metabolism
18.
Proteins ; 67(2): 293-304, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17299762

ABSTRACT

We report a 1.55 A X-ray crystal structure of the heme-binding domain of cytochrome b(5) from Musca domestica (house fly; HF b(5)), and compare it with previously published structures of the heme-binding domains of bovine microsomal cytochrome b(5) (bMc b(5)) and rat outer mitochondrial membrane cytochrome b(5) (rOM b(5)). The structural comparison was done in the context of amino acid sequences of all known homologues of the proteins under study. We show that insect b(5)s contain an extended hydrophobic patch at the base of the heme binding pocket, similar to the one previously shown to stabilize mammalian OM b(5)s relative to their Mc counterparts. The hydrophobic patch in insects includes a residue with a bulky hydrophobic side chain at position 71 (Met). Replacing Met71 in HF b(5) with Ser, the corresponding residue in all known mammalian Mc b(5)s, is found to substantially destabilize the holoprotein. The destabilization is a consequence of two related factors: (1) a large decrease in apoprotein stability and (2) extension of conformational disruption in the apoprotein beyond the empty heme binding pocket (core 1) and into the heme-independent folding core (core 2). Analogous changes have previously been shown to accompany replacement of Leu71 in rOM b(5) with Ser. That the stabilizing role of Met71 in HF b(5) is manifested primarily in the apo state is highlighted by the fact that its crystallographic Calpha B factor is modestly larger than that of Ser71 in bMc b(5), indicating that it slightly destabilizes local polypeptide conformation when heme is in its binding pocket. Finally, we show that the final unit of secondary structure in the cytochrome b(5) heme-binding domain, a 3(10) helix known as alpha6, differs substantially in length and packing interactions not only for different protein isoforms but also for given isoforms from different species.


Subject(s)
Cytochromes b5/chemistry , Insecta , Vertebrates , Amino Acid Sequence , Animals , Binding Sites , Cattle , Crystallography, X-Ray , Cytochromes b5/genetics , Cytochromes b5/metabolism , Heme/metabolism , Houseflies , Hydrophobic and Hydrophilic Interactions , Microsomes/chemistry , Mitochondrial Membranes/chemistry , Mutagenesis, Site-Directed , Protein Conformation , Protein Isoforms/chemistry , Rats , Sequence Homology , Species Specificity
19.
Biochemistry ; 45(46): 13750-9, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17105194

ABSTRACT

The outer mitochondrial membrane isoform of mammalian cytochrome b5 (OM b5) is considerably more stable than its microsomal counterpart (Mc b5), whereas the corresponding apoproteins (OM and Mc apo-b5) exhibit similar stability. OM and Mc apo-b5 are also similar in that their empty heme-binding pockets (core 1) are highly disordered but that the remainder of each apoprotein (core 2) displays substantial hololike structure. Core 1 residue 71 is leucine in all known mammalian OM b5's and serine in the corresponding Mc proteins. Replacing Leu-71 in rat OM (rOM) b5 with Ser has been shown to (1) decrease apoprotein thermodynamic stability by >2 kcal/mol and (2) extend conformational disorder beyond core 1 and into core 2, as evidenced in part by loss of a near-UV circular dichroism signal associated with the side chain of invariant residue Trp-22. Herein we report identification of a conserved Mc b5 core 2 packing motif that plays a key role in stabilizing apoprotein conformation in the vicinity of Trp-22, thereby compensating for the presence of Ser at position 71: a pi-stacking interaction between the side chains of Trp-22 and His-15 that is extended by hydrogen bonding between the side chains of His-15, Ser-20, and Glu-11. The corresponding conserved packing motif in OM b5's differs in having arginine at position 15 and glutamate at position 20. We also present evidence indicating that the conserved Mc b5 packing motif noted above contributes to the unusually extensive secondary structure exhibited by bovine Mc apo-b5 in the urea-denatured state.


Subject(s)
Cytochromes b5/metabolism , Heme/metabolism , Microsomes/enzymology , Mitochondria/enzymology , Protein Folding , Animals , Base Sequence , Circular Dichroism , Crystallography, X-Ray , Cytochromes b5/chemistry , DNA Primers , Models, Molecular , Protein Conformation , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
20.
Biochem J ; 395(3): 473-81, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16422668

ABSTRACT

The 2.6 A (1 A=0.1 nm) resolution structure has been determined for the glycosylated Fab (fragment antigen binding) of an IgM (Yvo) obtained from a subject with Waldenström's macroglobulinaemia. Dynamic light scattering was used to estimate the gel point and monitor the formation of an ordered hydroscopic gel of Yvo IgM upon cooling. If a cryoglobulin forms gels in peripheral tissues and organs, the associated swelling and damage to microvasculature can result in considerable morbidity and mortality. The three-dimensional structure of the branched N-linked oligosaccharide associated with the CH1 domain (first constant domain of heavy chain) is reported. The carbohydrate may act to shield part of the lateral surface of the CH1 domain and crowd the junction between the CH1 and CH2 domains, thereby limiting the segmental flexibility of the Fab arms in intact Yvo IgM, especially at low temperatures. Recently, Yvo IgM was shown to have the properties of a naturally occurring proteolytic antibody [Paul, Karle, Planque, Taguchi, Salas, Nishiyama, Handy, Hunter, Edmundson and Hanson (2004) J. Biol. Chem. 279, 39611-39619; Planque, Bangale, Song, Karle, Taguchi, Poindexter, Bick, Edmundson, Nishiyama and Paul (2004) J. Biol Chem. 279, 14024-14032]. The Yvo protein displayed the ability to cleave, by a nucleophilic mechanism, the amide bonds of a variety of serine protease substrates and the gp120 coat protein of HIV. An atypical serine, arginine and glutamate motif is located in the middle of the Yvo antigen-binding site and displays an overall geometry that mimics the classical serine, histidine and aspartate catalytic triad of serine proteases. Our present findings indicate that pre-existing or natural antibodies can utilize at least one novel strategy for the cleavage of peptide bonds.


Subject(s)
Cryoglobulins/chemistry , Cryoglobulins/metabolism , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin M/chemistry , Immunoglobulin M/metabolism , Amino Acid Sequence , Binding Sites , Catalysis , Cold Temperature , Crystallography, X-Ray , Gels/chemistry , Glycosylation , Humans , Lysine/chemistry , Lysine/metabolism , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment , Structural Homology, Protein , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...