Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2022: 2188940, 2022.
Article in English | MEDLINE | ID: mdl-35993055

ABSTRACT

Pharmaceutical excipients are compounds or substances other than API which are added to a dosage form, these excipients basically act as carriers, binders, bulk forming agents, colorants, and flavouring agents, and few excipients are even used to enhance the activity of active pharmaceutical ingredient (API) and various more properties. However, despite of these properties, there are problems with the synthetic excipients such as the possibility of causing toxicity, inflammation, autoimmune responses, lack of intrinsic bioactivity and biocompatibility, expensive procedures for synthesis, and water solubility. However, starch as an excipient can overcome all these problems in one go. It is inexpensive, there is no toxicity or immune response, and it is biocompatible in nature. It is very less used as an excipient because of its high digestibility and swelling index, high glycemic index, paste clarity, film-forming property, crystalline properties, etc. All these properties of starch can be altered by a few modification processes such as physical modification, genetic modification, and chemical modification, which can be used to reduce its digestibility and glycemic index of starch, improve its film-forming properties, and increase its paste clarity. Changes in some of the molecular bonds which improve its properties such as binding, crystalline structure, and retrogradation make starch perfect to be used as a pharmaceutical excipient. This research work provides the structural modifications of native starch which can be applicable in advanced drug delivery. The major contributions of the paper are advances in the modification of native starch molecules such as physically, chemically, enzymatically, and genetically traditional crop modification to yield a novel molecule with significant potential for use in the pharmaceutical industry for targeted drug delivery systems.


Subject(s)
Excipients , Starch , Drug Delivery Systems , Excipients/chemistry , Solubility , Starch/chemistry
2.
Biomed Res Int ; 2022: 9679181, 2022.
Article in English | MEDLINE | ID: mdl-35898676

ABSTRACT

Lentil is a notable legume crop valued for its high protein, vitamin, mineral, and amino acid (lysine and tryptophan) content. This crop has a narrow genetic base due to the formation of gene pool barriers during interspecific hybridization within and across species. Mutagenesis may be seen as a novel and alternative breeding technique for the production of new diversity. For the identification of new alleles, the creation of mutants followed by selection in subsequent generations would be necessary. Induction of mutation in lentil cv. Moitree by gamma rays therefore produced high variation for the majority of quantitative measures examined. Henceforth, principal component analysis (PCA) and path coefficient analysis were conducted to identify and exclude redundant mutant genotypes with similar traits as the success of breeding is dependent on understanding the relationship between morpho-agronomic traits and seed yield. As shown by the findings of this research, the total quantity of pods per mutant plant should be given considerable priority. The identified mutant genotypes, such as lines 24, 43, 28, 33, and 10, may be used as parents in future breeding or released directly following trials.


Subject(s)
Lens Plant , Gamma Rays , Lens Plant/chemistry , Lens Plant/genetics , Mutation/genetics , Phenotype , Plant Breeding/methods
3.
Comput Intell Neurosci ; 2022: 4334852, 2022.
Article in English | MEDLINE | ID: mdl-38501034

ABSTRACT

To consistently assess a patient's internal and external wellness and diagnose chronic conditions like cancer, Alzheimer's disease, and cardiovascular disease, wearable sensing devices are being used. Wearable technologies and networking websites have become incredibly common in the medical sector in recent times. The condition of a patient's health can be influenced by a number of factors, including psychological response, emotional stability, and anxiety levels, which can be evaluated using social network analysis based on graph theory-based techniques and these ideas, known as "social network analysis" (SNA) are used to study relationship phenomena. Therefore, numerous uses for SNA in health research are possible, ranging from social science to exact science. For example, it can be used to research cooperative networks of healthcare providers and hazard-prone behaviors, infectious disease transmission, and the spread of initiatives for health promotion and prevention. Recently, a number of machine learning-based healthcare solutions have been proposed to track chronic illnesses utilizing data from social networks and wearable monitoring devices. In our suggested approach, we are using an intelligent system with the assistance of wearable sensors for the classification of cancer based on DNA methylation, an important epigenetic process in the human genome that controls gene expression and has been connected to a number of health issues. A mixed-sampling imbalanced data ensemble classification technique is created with the help of biomedical sensors to address the problem of class imbalance and high dimensionality in the Cancer Genome Atlas (TCGA) massive data. This technique is based on the Intelligent Synthetic Minority Oversampling (SMOTE) algorithm. The false-negative rate significantly rises as a result of this, to give a larger data set, a new minority class sample will be first obtained. The noise created during the sample expansion process is actually any data that has been acquired, preserved, or altered in a way that prevents the system that initially conceived it from accessing or utilizing it. Noisy data boosts the amount of space needed excessively and can also drastically influence the findings of any data collection investigation and therefore can also affect the sample sets of one or the other class, resulting in the class imbalance which acts as a common problem in ML datasets. The Tomek Link method is then used to eliminate this noise, producing a reasonably balanced data set. Each layer selects two random forest structures using the cascading forest structure of the deep forest (GC-Forest) algorithm to increase the generalization ability of the model and create the final classification model. Experiments using DNA methylation data collected by employing biosensors from six tumor patients reveal that the mixed-sampling unbalanced data ensemble classification technique may increase the sensitivity to the minority class while maintaining the majority class's classification accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...