Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Phys Chem B ; 118(19): 5093-100, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24773012

ABSTRACT

The fucoxanthin chlorophyll a/c-binding protein (FCP) is a unique antenna complex possessed by diatoms. Although FCP complexes have been isolated from various diatoms, there is no direct evidence for the existence of FCP associated with photosystem II (FCPII). Here, we report the isolation and spectroscopic characterization of FCPII complex from the diatom Chaetoceros gracilis. The FCPII complex was purified using sucrose centrifugation and anion-exchange chromatography. Clear-native PAGE and SDS-PAGE analyses revealed that the FCPII complex was composed of FCP-A oligomer and FCP-B/C trimer. Time-resolved fluorescence spectra of the FCPII complex were measured at 77 K. The characteristic lifetimes and fluorescence components were determined using global fitting analysis, followed by the construction of fluorescence decay-associated spectra (FDAS). FDAS exhibited fluorescence rises and decays, reflecting excitation energy transfer, with the time constants of 150 ps, 800 ps, and 2.9 ns. The long time constants are most likely attributed to the intercomplex excitation energy transfer between FCP-A oligomer and FCP-B/C trimer in the FCPII complex. The 5.6 ns FDAS likely originates from the final energy traps. In contrast, the FDAS exhibited no quenching component with any time constant. These results indicate that the FCPII complex is efficient in light harvesting and excitation energy transfer.


Subject(s)
Chlorophyll/chemistry , Diatoms/chemistry , Photosystem II Protein Complex/chemistry , Xanthophylls/chemistry , Centrifugation, Density Gradient , Chlorophyll A , Chromatography, Ion Exchange , Diatoms/physiology , Light , Photosynthesis/physiology , Photosystem II Protein Complex/isolation & purification , Protein Multimerization
2.
Biochim Biophys Acta ; 1837(9): 1514-21, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24530875

ABSTRACT

In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx-Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300fs. Chl c transferred excitation energy to Chl a with time constants of 500-600fs (intra-complex transfer), 600-700fs (intra-complex transfer), and 4-6ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.


Subject(s)
Chlorophyll Binding Proteins/chemistry , Energy Transfer , Fluorescence Polarization , Photosystem II Protein Complex/chemistry , Spectrometry, Fluorescence
3.
Biochim Biophys Acta ; 1817(8): 1483-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22285745

ABSTRACT

Cyanobacteria change the quantity and/or quality of their pigment-protein complexes in response to light conditions. In the present study, we analyzed excitation relaxation dynamics in the cyanobacterium, Arthrospira (Spirulina) platensis, grown under lights exhibiting different spectral profiles, by means of steady-state absorption and picosecond time-resolved fluorescence spectroscopies. It was found that F760, which is the PSI red-chlorophyll characteristic of A. platensis, contributes to slower energy-transfer phase in the PSI of A. platensis. Excitation energy transfers in phycobilisome and those from PSII to PSI were modified depending on the light quality. Existence of quencher was suggested in PSI of the blue-light grown cells. Phycobilisomes in the green-light grown cells and the far-red-light grown cells transferred excitation energy from phycobilisome to chlorophyll without loss of energy. In these cells, excitation energy was shared between two photosystems. Fast energy transfer was established in phycobilisome under the yellow-light condition where only the phycobilisome can absorb the cultivation light. Differences in light-harvesting and energy-transfer processes under different cultivation-light conditions are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Subject(s)
Cyanobacteria/physiology , Light-Harvesting Protein Complexes/physiology , Spectrometry, Fluorescence/methods , Adaptation, Physiological , Cyanobacteria/growth & development , Energy Transfer , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...