Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(27): 11252-11256, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38940199

ABSTRACT

We demonstrate hydrothermally grown sodium hydrogen zirconium phosphate ((Na,H)-ZrP) crystals exhibiting high calcium ion selectivity. The standard Gibbs free energies for Ca2+ exchange on (Na,H)-ZrP and γ-type ZrP were estimated to be -10.1 and -4.69 kJ mol-1, respectively. The high Ca2+ selectivity of (Na,H)-ZrP could be attributed to the size matching between the ion exchange site of (Na,H)-ZrP and Ca2+.

2.
Chem Sci ; 15(18): 6679-6689, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38725509

ABSTRACT

Recombination of photoexcited carriers at interface states is generally believed to strongly govern the photoelectrochemical (PEC) performance of semiconductors in electrolytes. Sacrificial reagents (e.g., methanol or Na2SO3) are often used to assess the ideal PEC performance of photoanodes in cases of minimised interfacial recombination kinetics as well as accelerated surface reaction kinetics. However, varying the sacrificial reagents in the electrolyte means simultaneously changing the equilibrium potential and the number of electrons required to perform the sacrificial reaction, and thus the thermodynamic and kinetic aspects of the PEC reactions cannot be distinguished. In the present study, we propose an alternative methodology to experimentally evaluate the energy levels of interfacial recombination centres that can reduce PEC performance. We prepare nonaqueous electrolytes containing three different Ru complexes with different bipyridyl ligands; redox reactions of Ru complexes represent one-electron processes with similar charge transfer rates and diffusion coefficients. Therefore, the Ru complexes can serve as a probe to isolate and evaluate only the thermodynamic aspects of PEC reactions. Recombination centres at the interface between a nonaqueous electrolyte and a Zn0.25Cd0.75Se particulate photoanode are elucidated using this method as a model case. The energy level at which photocorrosion proceeds is also determined.

3.
ACS Appl Mater Interfaces ; 16(6): 7038-7046, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38307866

ABSTRACT

Amino-functionalized carbon (NH2C) is an effective adsorbent in removing pollutants from contaminated water because of its high specific surface area and electrical charge. In the conventional preparation method, the introduction of amino groups onto the carbon surface is limited, resulting in low pollutant adsorption. Herein, we present simultaneous carbonization and amination to form NH2C via electrical discharge of nonequilibrium plasma, and the resultant material is applied as an effective adsorbent in fluoride removal. The simultaneous process introduces numerous amino groups into the carbon framework, enhancing the adsorption efficiency. The fluoride adsorption capacity is approximately 121.12 mg g-1, which is several times higher than those reported in previous studies. Furthermore, computational modeling is performed to yield deeper mechanistic insights into the molecular-level adsorption behavior. These data are useful in designing and synthesizing advanced materials for applications in water remediation.

4.
ACS Omega ; 9(6): 7022-7033, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371832

ABSTRACT

The water oxidation reaction is a rate-determining step in solar water splitting. The number of surviving photoexcited holes is one of the most influencing factors affecting the photoelectrochemical water oxidation efficiency of photocatalysts. The solar-to-hydrogen energy conversion efficiency of BaTaO2N is still far below the benchmark efficiency set for practical applications, notwithstanding its potential as a 600 nm-class photocatalyst in solar water splitting. To improve its efficiency in photoelectrochemical water splitting, this study offers a straightforward route to develop photocatalytic materials based on the combination of BaTaO2N and carbonaceous materials with different dimensions. The impact of diverse carbonaceous materials, such as fullerene, g-C3N4, graphene, carbon nanohorns, and carbon nanotubes, on the photoelectrochemical behavior of BaTaO2N has been examined. Notably, the use of graphene and g-C3N4 remarkably improves the photoelectrochemical performance of the composite photocatalysts through a higher photocurrent and acting as electron reservoirs. Consequently, a marked reduction in recombination rates, even at low overpotentials, leads to a higher accumulation of photoexcited holes, resulting in 2.6- and 1.7-fold increased BaTaO2N photocurrent densities using graphene and g-C3N4, respectively. The observed trends in the dark for the oxygen reduction reaction (ORR) potential align with the increase in the photocurrent density, revealing a good correlation between opposite phenomena. Importantly, the enhancement observed implies an underlying accumulation phenomenon. The verification of this concept lies in the evidence provided by oxygen reduction and is in line with photoredox flux matching during photocatalysis. This research underscores the intricate interplay between carbonaceous materials and oxynitride photocatalysts, offering a strategic approach to enhancing various photocatalytic capabilities.

5.
Small ; 20(18): e2308047, 2024 May.
Article in English | MEDLINE | ID: mdl-38169109

ABSTRACT

Crystal growth methods that do not require high temperatures are highly needed for the facile growth of oxide single crystals with melting points of several thousand degrees Celsius. This paper represents the first report of a method for the low-temperature growth of ruby crystals (chromium-doped Al2O3) at 750 °C, which is one-third of the conventionally required temperature (2050 °C). In solution-based crystal growth, the target crystal is grown at a temperature considerably lower than its melting point. However, conventional crystal growth processes involving solvent evaporation and cooling require high temperatures to completely liquefy the material, with previously reported solution growth temperatures of ≈1100 °C. Supersaturation based on the decomposition of crystal-solvent intermediates eliminates the need to completely liquefy the material, enabling low-temperature crystal growth. The combination of computational and experimental investigations helps determine the optimum conditions for low-temperature crystal growth. The proposed method is a novel green process that breaks the conventional frontiers of crystal growth while ensuring eco-friendliness and low energy consumption. In addition, its scope can potentially be expanded to the synthesis of various crystals and direct growth on substrates with low melting points.

6.
Adv Sci (Weinh) ; 10(33): e2305179, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37852947

ABSTRACT

Barium tantalum oxynitride (BaTaO2 N), as a member of an emerging class of perovskite oxynitrides, is regarded as a promising inorganic material for solar water splitting because of its small band gap, visible light absorption, and suitable band edge potentials for overall water splitting in the absence of an external bias. However, BaTaO2 N still exhibits poor water-splitting performance that is susceptible to its synthetic history, surface states, recombination process, and instability. This review provides a comprehensive summary of previous progress, current advances, existing challenges, and future perspectives of BaTaO2 N for solar water splitting. A particular emphasis is given to highlighting the principles of photoelectrochemical (PEC) water splitting, classic and emerging photocatalysts for oxygen evolution reactions, and the crystal and electronic structures, dielectric, ferroelectric, and piezoelectric properties, synthesis routes, and thin-film fabrication of BaTaO2 N. Various strategies to achieve enhanced water-splitting performance of BaTaO2 N, such as reducing the surface and bulk defect density, engineering the crystal facets, tailoring the particle morphology, size, and porosity, cation doping, creating the solid solutions, forming the heterostructures and heterojunctions, designing the photoelectrochemical cells, and loading suitable cocatalysts are discussed. Also, the avenues for further investigation and the prospects of using BaTaO2 N in solar water splitting are presented.

7.
J Colloid Interface Sci ; 645: 219-226, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37149996

ABSTRACT

On the basis of the inherent property limitations of commercial P25-TiO2, many surface interface modification methods have attracted substantial attention for further improving the photocatalytic properties. However, current strategies for designing and modifying efficient photocatalysts (which exhibit complicated manufacturing processes and harsh conditions) are not efficient for production that is low cost, is nontoxic, and exhibits good stability; and therefore restrict practical applications. Herein, a facile and reliable method is reported for in situ amine-containing silane coupling agent functionalization of commercial P25-TiO2 by covalent surface modification for constructing a highly efficient photocatalyst. As a consequence, a high efficiency of H2 evolution was achieved for TiO2-SDA with 0.95 mmol h-1 g-1 (AQE ∼45.6 % at 365 nm) under solar light irradiation without a co-catalyst. The amination modification broadens the light absorption range of the photocatalyst, inhibits the binding of photogenerated carriers, and improves the photocatalytic efficiency; which was verified by photochemical properties and DFT theoretical calculations. This covalent modification method ensures the stability of the photocatalytic reaction. This work provides an approach for molecularly modified photocatalysts to improve photocatalytic performance by covalently modifying small molecules containing amine groups on the photocatalyst surface.

8.
J Colloid Interface Sci ; 642: 829-836, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36870903

ABSTRACT

Advanced oxidation technologies (AOTs) proved to be effective in the degradation of hazardous organic impurities like acids, dyes, antibiotics etc. in the last few decades. AOTs are mainly based on the generation of reactive chemical species (RCS) such as hydroxyl, superoxide radicals etc., which plays an important role in the degradation of organiccompounds. In this work, plasma supported AOT i.e. Fenton reactions have been applied for the degradation of ibuprofen. As compared to traditional AOTs plasma assisted AOT is technologically superior due to its capability to produce RCS at a controlled rate without using chemical agents. This process work at normal room temperature and pressure. Herein, we optimized better operating conditions to generate good plasma discharge and hydroxyl radicals based on critical parameters, including frequency, pulse width and different gases like O2, Ar etc. Also, the one-pot carbonization method is used for the synthesis of Fe-based ordered mesoporous carbon (OMC) as a heterogeneous catalyst for the Fenton reactions. Using plasma-supported Fenton reactions, 88.3 % degradation efficiency is achieved using Fe-OMC catalyst for the ibuprofen degradation. Also, the mineralization of the ibuprofen is studied using total organic carbon (TOC) analysis.

9.
ACS Appl Mater Interfaces ; 15(10): 13108-13120, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36853194

ABSTRACT

Ball milling has been shown empirically to produce fine photocatalytic particles from large bulky particles but to drastically reduce the photocatalytic activity of such material during water splitting due to mechanical damage to the photocatalyst surfaces. If the damaged photocatalyst surfaces could be removed or reconstructed, the reduced particle sizes resulting from milling would be expected to provide enhanced photocatalytic activity. In the present study, fine particles of crystalline Cu2Sn0.38Ge0.62S3 (CTGS), which is responsive to long wavelength light up to the near-infrared region, were synthesized by a flux method and subsequent ball milling. A photocathode made of such particles showed significantly enhanced photoelectrochemical (PEC) performance under simulated sunlight while the photocatalytic hydrogen evolution activity of a powder suspension system made from the same material exhibited a typical decrease. The CTGS crystalline particles synthesized using the flux method were found to be highly crystalline but to have relatively large micrometer-scale sizes. Ball milling reduced the particle size but produced an amorphous coating of oxidized species that lowered the photocatalytic activity of the powder suspension system. Typical surface modifications of a photocathode made from this material, consisting of wet chemical processes, also served as an etching treatment to successfully remove the minimally crystalline surface layer and provide greater PEC activity. These data suggest the benefits of combining flux crystal growth with ball milling and the appropriate chemical etching process to obtain high-crystallinity fine photocatalytic particles responsive to long wavelength light with improved PEC hydrogen evolution activity.

10.
J Phys Chem Lett ; 14(2): 584-591, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36633441

ABSTRACT

In layered materials, the layer-stacking sequence allows the tuning of ion transport and storage properties by modulating the host-ion interactions. However, unlike in the case of cations, the relationship between the stacking sequence and anion transport and storage properties is less clearly understood. Herein, we demonstrate that the stacking sequence governs the nitrate-storage properties of layered double hydroxides (LDHs); the 2H1 polytype enhances the nitrate-storage capacity to 400% of that of the 3R1 polytype. A quartz crystal microbalance with dissipation monitoring combined with multimodal ex situ experiments indicated that the high ion-storage capacity of the 2H1 polytype originates from the soft nature of LDHs lattices, which facilitates nitrate with minimal lattice changes. In contrast, the rigid lattice of the 3R1 sequence requires a notably large lattice expansion, which is detrimental to ion storage. Our findings can aid the rational design of anion-host interaction-derived functionalities.

11.
Environ Res ; 219: 115114, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36574800

ABSTRACT

In this study water solutions are desalinated with carbon electrodes of modified surface charges. The idea is to endow the electrodes with the ability to physically adsorb salt ions without applying potential so as to save energy. The modification enhanced to decrease the energy consumption of a newly invented adsorption-CDI hybrid system by 19%, since modified activated carbon cell consumed 0.620 (relative error 3.00%) kWh/m3 compared to pristine activated carbon cell which consumed 0.746 (relative error 1.20%) kWh/m3. Further analysis revealed high adsorption capacity of the modified activated carbon electrode cell which exhibited 9.0 (relative error 2.22%) compared to activated carbon cell with 5.3 (relative error 5.66%) mg g-1. These results show the potential of surface modification in adding value to low cost activated carbons for application in CDI.


Subject(s)
Charcoal , Water Purification , Adsorption , Water Purification/methods , Sodium Chloride , Electrodes
12.
Langmuir ; 38(43): 13288-13295, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36269033

ABSTRACT

Selectivity of ion exchangers is an important topic in adsorption science owing to its specific application in resource recovery and environmental remediation. In this study, the cation exchange property of the submillimeter-sized five-coordinate K2Ti2O5 (KTO) crystals is demonstrated. Adsorption isotherm measurements were performed on KTO crystals ion-exchanged with alkali metal cations including Li+, Na+, Rb+, and Cs+. The maximum adsorption amounts of Li+, Na+, Rb+, and Cs+ on KTO were 2.70, 1.15, 0.59, and 0.42 mmol g-1, respectively, which is contradictory to the "normal" selectivity sequence (Cs+ > Rb+ > K+ > Na+ > Li+) of conventional ion exchangers, including clays and organic resins. The Kielland plots for the Li+ and Cs+ exchange experiments showed preferential Li+ adsorption on KTO, which supports the high Li+ selectivity. The interlayer distance for M+-exchanged KTO (M = Li, Na, Rb, and Cs) was dependent on cation type. Raman and X-ray absorption near-edge structure spectroscopic analyses of the KTO samples indicated that certain Ti species in KTO underwent hydrolysis, and thereby formed hydroxyl groups on the KTO surface during ion exchange. The origin of the high Li+ selectivity of KTO is discussed herein based on experimental characterization results.

13.
Nat Commun ; 13(1): 6448, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36307449

ABSTRACT

Water-containing layered materials have found various applications such as water purification and energy storage. The highly structured water molecules around ions under the confinement between the layers determine the ion storage ability. Yet, the relationship between the configuration of interlayer ions and water structure in high ion storage layered materials is elusive. Herein, using layered double hydroxides, we demonstrate that the water structure is sensitive to the filling density of ions in the interlayer space and governs the ion storage. For ion storage of dilute nitrate ions, a 24% decrease in the filling density increases the nitrate storage capacity by 300%. Quartz crystal microbalance with dissipation monitoring studies, combined with multimodal ex situ experiments and theoretical calculations, reveal that the decreasing filling density effectively facilitates the 2D hydrogen-bond networking structure in water around interlayer nitrate ions along with minimal change in the layered structure, leading to the high storage capacity.

14.
ACS Omega ; 7(33): 28904-28911, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36033685

ABSTRACT

Sodium tantalate (NaTaO3) is an attractive functional material for photocatalysis. To understand its physical properties, significant efforts for milli-sized single-crystal growth of NaTaO3 have been made. However, the growth was difficult due to the smaller size in solid-state growth or probable decomposition and melting in melt growth. Recently, we grew milli-order NaTaO3 single crystals in Na2MoO4 flux. However, the reproducibility of the growth was not sufficient and hindered the stable supply of the crystal for physicochemical evaluations and further growth. The poor reproducibility was assumed to be due to the inhomogeneous, unstable growth field in response to the external atmosphere provided by nonoptimal experimental conditions. A saturated solution is considered the most suitable crystal growth field because it has the highest solubility and facilitates crystal growth with suppressed nucleation. Since supersaturation is the driving force for crystal growth, we considered that large crystals could be obtained with high frequency if growth could be controlled in the region where solubility changes rapidly. To compile a guideline for crystal growth under the control of supersaturation, the solubility of NaTaO3 in Na-based fluxes, including Na2MoO4, was studied. Using NaTaO3 molding pellets immersed in molten flux, the solubility curve for NaTaO3 was successfully measured. Based on the solubility, the optimal experimental conditions, that is, the heating temperature, the slow-cooling section, and the amount of flux as a solvent, were determined. Finally, we demonstrated the growth of NaTaO3 in Na2MoO4 flux and achieved milli-order crystals with high frequency. Our findings regarding the solubility of NaTaO3 in molten flux may assist in the stable supply of milli-order single crystals for material evaluation and larger crystal growth.

15.
RSC Adv ; 12(13): 7626-7634, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35424714

ABSTRACT

Lightning strikes cause nitrogen to dissolve in water and form reactive nitrogen and oxygen species, which form natural fertilizers that can be absorbed through plant roots. Such processes during rainstorm events can be simulated by applying plasma to a solution. Plasma-activated water (PAW) has great potential as a source of various dissolved reactive chemical species. Different mixtures of species are produced using different solution compositions. Here, basil seeds were grown in PAW to prevent blooms of Chlorella vulgaris and ion chromatography and UV-vis spectroscopy were used to quantify reactive ions. NO2 -, NO3 -, and H2O2 were found to be key to the antialgal effect. Secondary reactive ions such as peroxynitrite (ONOO-, ONOOH) were also involved. The antialgal effect was strongly related to the pH around the algal cells. Acidification was predominantly caused by the generation of NO2 - and H2O2. After two weeks monitoring basil growth, the antifungal properties were preserved, few reactive oxygen species formed in the plasma zone, and only reactive nitrogen species were transformed into reactive peroxynitrite ions. The pH around the cells was determined using an iridium oxide microelectrode. The PAW antialgal mechanism depended on acidic conditions (pH 2.2, at which peroxynitrite can be generated) under which ONOOH penetrated the algal cell membranes, destroying the cells and preventing growth. This practical and sustainable PAW process allows a surprising amount of fertilizer to be generated with an antialgal effect that could be used in various eco-friendly agricultural processes under ambient conditions.

16.
Inorg Chem ; 61(11): 4566-4571, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35258296

ABSTRACT

Birnessite manganese oxide is a promising candidate as an electrode material for aqueous supercapacitors owing to its pseudocapacitance associated with fast redox processes. While manganese oxides are semiconductive, the conductivity is much lower than that of typical materials used for capacitive electrodes such as activated carbon or ruthenium oxide. In an attempt to increase the electronic conductivity of birnessite, a new solid solution phase, Ky(Mn1-xIrx)O2, was synthesized, and the electrochemical charge storage capability of Ir-doped birnessite was studied in aqueous Li2SO4. Structural characterization revealed that the single-phase Ky(Mn1-xIrx)O2 could be synthesized up to x = 0.1. An increase in the pseudocapacitive charge was observed with the increase in Ir content. In addition to the increase in the pseudocapacitive charge, an unusual change in the peak potential was observed. The peak-to-peak difference for the Mn4+/Mn3+ redox decreased with increasing Ir content, indicating an increase in the reversibility of the pseudocapacitive process. The decrease in peak-to-peak difference was observed only by Ir substitution and was not observed for physical mixtures of K0.28MnO2 and IrO2, suggesting a strong electronic interaction between the host Mn ion and the substituting Ir ion.

17.
ACS Appl Mater Interfaces ; 13(43): 51186-51197, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34672191

ABSTRACT

Layered double hydroxides (LDHs) have attracted significant attention as adsorbents for the removal of anions from wastewater. However, it is challenging to develop a simple, economical, and environmentally friendly method for fabricating efficient LDH adsorbents. In this paper, we present an alternative approach for preparing a superb NiFe LDH adsorbent via a single-step topochemical synthesis method based on density functional theory (DFT) calculation. The NiFe LDH adsorbent [Ni0.75Fe0.25(OH)2]·(CO3)0.125·0.25H2O was obtained via the topotactic transformation of an oxide precursor (NaNi0.75Fe0.25O2), which was prepared by utilizing the high-temperature flux method, in ultrapure water. When the oxide precursor was soaked in ultrapure water, the host layer valence state changed from Ni3+ and Fe3+ to Ni2+ and Fe3+, and carbonate (CO32-) ions were simultaneously intercalated in the interlayer. Thereafter, the CO32- ions were deintercalated by Cl- ions to increase the adsorption capacity. The adsorbent exhibited high crystallinity, cation state, and porosity, and unique particle shape. In addition, it showed superior adsorption capacities of approximately 194.92, 176.15, and 146.28 mg g-1 toward phosphate, fluoride, and nitrate ions, respectively. The adsorption capacity toward all the anions reached over 70% within 10 min. The adsorption behavior was investigated by performing from adsorption kinetics, isotherm, and thermodynamics studies. The results showed that the anions were endothermically and spontaneously chemisorbed through an ion exchange process onto the adsorbent in a monolayer. In addition, the as-prepared NiFe LDH adsorbent showed high stability after multicycle testing.

18.
J Am Chem Soc ; 143(15): 5698-5708, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33827207

ABSTRACT

Cu2SnxGe1-xS3 (CTGS) particles were synthesized via a solid-state reaction and assessed, for the first time, as both photocatalysts and photocathode materials for hydrogen evolution from water. Variations in the crystal and electronic structure with the Sn/Ge ratio were examined experimentally and theoretically. The incorporation of Ge was found to negatively shift the conduction band minimum, such that the bandgap energy could be tuned over the range 0.77-1.49 eV, and also increased the driving force for the photoexcited electrons involved in hydrogen evolution. The effects of the Sn/Ge ratio and of Cu deficiency on the photoelectrochemical performance of Cu2SnxGe1-xS3 and CuySn0.38Ge0.62S3 (1.86 < y < 2.1) based photocathodes were evaluated under simulated sunlight. Both variations in the band-edge position and the presence of a secondary impurity phase affected the performance, such that a particulate Cu1.9Sn0.38Ge0.62S3 photocathode was the highest performing specimen. This cathode gave a half-cell solar-to-hydrogen energy conversion efficiency of 0.56% at 0.18 V vs a reversible hydrogen electrode (RHE) and an incident-photon-to-current conversion efficiency of 18% in response to 550 nm monochromatic light at 0 VRHE. More importantly, these CTGS particles also demonstrated significant photocatalytic activity during hydrogen evolution and were responsive to radiation up to 1500 nm, representing infrared light. The chemical stability, lack of toxicity, and high activity during hydrogen evolution of the present CTGS particles suggest that they may be potential alternatives to visible/infrared light responsive Cu-chalcogenide photocatalysts and photocathode materials such as Cu(In,Ga)(S,Se)2 and Cu2ZnSnS4.

19.
Phys Chem Chem Phys ; 23(9): 5673-5679, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33657196

ABSTRACT

A visible light responsive photocatalyst, Mo-doped BiVO4 (Mo:BVO), was shown to promote oxygen evolution from water in response to photon upconverted emission based on triplet-triplet annihilation (TTA) in the same aqueous dispersion. Composites comprising a triplet sensitizer (Pt(ii) octaethylporphyrin; PtOEP) and a singlet emitter (9,10-diphenylanthracene; DPA) intercalated in a layered clay compound (montmorillonite or saponite) were prepared using a facile but versatile solvothermal method. These composites were capable of converting green incident light (λ = 535 nm) to blue light (λ = 430 nm) even in air. The host layered clay as well as the co-intercalated surfactant evidently functioned as barriers against water and oxygen to prevent the quenching of the active compounds. The TTA upconversion driven photocatalytic oxygen evolution using the aqueous mixture of the dyes-clay composite and particulate photocatalysts can be a potential approach to eliminate the undesired optical losses and thus be a breakthrough for future industrial and large-scale installation in an inexpensive manner.

20.
Nat Commun ; 12(1): 1005, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33579929

ABSTRACT

Oxynitride photocatalysts hold promise for renewable solar hydrogen production via water splitting owing to their intense visible light absorption. Cocatalyst loading is essential for activation of such oxynitride photocatalysts. However, cocatalyst nanoparticles form aggregates and exhibit weak interaction with photocatalysts, which prevents eliciting their intrinsic photocatalytic performance. Here, we demonstrate efficient utilization of photoexcited electrons in a single-crystalline particulate BaTaO2N photocatalyst prepared with the assistance of RbCl flux for H2 evolution reactions via sequential decoration of Pt cocatalyst by impregnation-reduction followed by site-selective photodeposition. The Pt-loaded BaTaO2N photocatalyst evolves H2 over 100 times more efficiently than before, with an apparent quantum yield of 6.8% at the wavelength of 420 nm, from a methanol aqueous solution, and a solar-to-hydrogen energy conversion efficiency of 0.24% in Z-scheme water splitting. Enabling uniform dispersion and intimate contact of cocatalyst nanoparticles on single-crystalline narrow-bandgap particulate photocatalysts is a key to efficient solar-to-chemical energy conversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...