Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Netw ; 178: 106481, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38945117

ABSTRACT

Convergence in the presence of multiple equilibrium points is one of the most fundamental dynamical properties of a neural network (NN). Goal of the paper is to investigate convergence for the classic Brain-State-in-a-Box (BSB) NN model and some of its relevant generalizations named Brain-State-in-a-Convex-Body (BSCB). In particular, BSCB is a class of discrete-time NNs obtained by projecting a linear system onto a convex body of Rn. The main result in the paper is that the BSCB is convergent when the matrix of the linear system is symmetric and positive semidefinite or, otherwise, it is symmetric and the step size does not exceed a given bound depending only on the minimum eigenvalue of the matrix. This result generalizes previous results in the literature for BSB and BSCB and it gives a solid foundation for the use of BSCB as a content addressable memory (CAM). The result is proved via Lyapunov method and LaSalle's Invariance Principle for discrete-time systems and by using some fundamental inequalities enjoyed by the projection operator onto convex sets as Bourbaki-Cheney-Goldstein inequality.

2.
Article in English | MEDLINE | ID: mdl-37279127

ABSTRACT

The article considers a large class of delayed neural networks (NNs) with extended memristors obeying the Stanford model. This is a widely used and popular model that accurately describes the switching dynamics of real nonvolatile memristor devices implemented in nanotechnology. The article studies via the Lyapunov method complete stability (CS), i.e., convergence of trajectories in the presence of multiple equilibrium points (EPs), for delayed NNs with Stanford memristors. The obtained conditions for CS are robust with respect to variations of the interconnections and they hold for any value of the concentrated delay. Moreover, they can be checked either numerically, via a linear matrix inequality (LMI), or analytically, via the concept of Lyapunov diagonally stable (LDS) matrices. The conditions ensure that at the end of the transient capacitor voltages and NN power vanish. In turn, this leads to advantages in terms of power consumption. This notwithstanding, the nonvolatile memristors can retain the result of computation in accordance with the in-memory computing principle. The results are verified and illustrated via numerical simulations. From a methodological viewpoint, the article faces new challenges to prove CS since due to the presence of nonvolatile memristors the NNs possess a continuum of nonisolated EPs. Also, for physical reasons, the memristor state variables are constrained to lie in some given intervals so that the dynamics of the NNs need to be modeled via a class of differential inclusions named differential variational inequalities.

3.
IEEE Trans Cybern ; 52(3): 1822-1835, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32559170

ABSTRACT

This article introduces a new class of memristor neural networks (NNs) for solving, in real-time, quadratic programming (QP) and linear programming (LP) problems. The networks, which are called memristor programming NNs (MPNNs), use a set of filamentary-type memristors with sharp memristance transitions for constraint satisfaction and an additional set of memristors with smooth memristance transitions for memorizing the result of a computation. The nonlinear dynamics and global optimization capabilities of MPNNs for QP and LP problems are thoroughly investigated via a recently introduced technique called the flux-charge analysis method. One main feature of MPNNs is that the processing is performed in the flux-charge domain rather than in the conventional voltage-current domain. This enables exploiting the unconventional features of memristors to obtain advantages over the traditional NNs for QP and LP problems operating in the voltage-current domain. One advantage is that operating in the flux-charge domain allows for reduced power consumption, since in an MPNN, voltages, currents, and, hence, power vanish when the quick analog transient is over. Moreover, an MPNN works in accordance with the fundamental principle of in-memory computing, that is, the nonlinearity of the memristor is used in the dynamic computation, but the same memristor is also used to memorize in a nonvolatile way the result of a computation.


Subject(s)
Neural Networks, Computer , Nonlinear Dynamics
4.
Front Neurosci ; 15: 681035, 2021.
Article in English | MEDLINE | ID: mdl-34177457

ABSTRACT

Since the introduction of memristors, it has been widely recognized that they can be successfully employed as synapses in neuromorphic circuits. This paper focuses on showing that memristor circuits can be also used for mimicking some features of the dynamics exhibited by neurons in response to an external stimulus. The proposed approach relies on exploiting multistability of memristor circuits, i.e., the coexistence of infinitely many attractors, and employing a suitable pulse-programmed input for switching among the different attractors. Specifically, it is first shown that a circuit composed of a resistor, an inductor, a capacitor and an ideal charge-controlled memristor displays infinitely many stable equilibrium points and limit cycles, each one pertaining to a planar invariant manifold. Moreover, each limit cycle is approximated via a first-order periodic approximation analytically obtained via the Describing Function (DF) method, a well-known technique in the Harmonic Balance (HB) context. Then, it is shown that the memristor charge is capable to mimic some simplified models of the neuron response when an external independent pulse-programmed current source is introduced in the circuit. The memristor charge behavior is generated via the concatenation of convergent and oscillatory behaviors which are obtained by switching between equilibrium points and limit cycles via a properly designed pulse timing of the current source. The design procedure takes also into account some relationships between the pulse features and the circuit parameters which are derived exploiting the analytic approximation of the limit cycles obtained via the DF method.

5.
Opt Express ; 20(24): 27108-22, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23187567

ABSTRACT

This paper addresses the problem of reducing the effects of wavefront distortions in ground-based telescopes within a "Modal-Control" framework. The proposed approach allows the designer to optimize the Youla parameter of a given modal controller with respect to a relevant adaptive optics performance criterion defined on a "sampled" frequency domain. This feature makes it possible to use turbulence/vibration profiles of arbitrary complexity (even empirical power spectral densities from data), while keeping the controller order at a moderate value. Effectiveness of the proposed solution is also illustrated through an adaptive optics numerical simulator.


Subject(s)
Algorithms , Computer Simulation , Models, Theoretical , Optical Devices , Pattern Recognition, Automated/methods , Nonlinear Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...