Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5057, 2022 08 27.
Article in English | MEDLINE | ID: mdl-36030269

ABSTRACT

Subsea permafrost represents a large carbon pool that might be or become a significant greenhouse gas source. Scarcity of observational data causes large uncertainties. We here use five 21-56 m long subsea permafrost cores from the Laptev Sea to constrain organic carbon (OC) storage and sources, degradation state and potential greenhouse gas production upon thaw. Grain sizes, optically-stimulated luminescence and biomarkers suggest deposition of aeolian silt and fluvial sand over 160 000 years, with dominant fluvial/alluvial deposition of forest- and tundra-derived organic matter. We estimate an annual thaw rate of 1.3 ± 0.6 kg OC m-2 in subsea permafrost in the area, nine-fold exceeding organic carbon thaw rates for terrestrial permafrost. During 20-month incubations, CH4 and CO2 production averaged 1.7 nmol and 2.4 µmol g-1 OC d-1, providing a baseline to assess the contribution of subsea permafrost to the high CH4 fluxes and strong ocean acidification observed in the region.


Subject(s)
Greenhouse Gases , Permafrost , Carbon , Hydrogen-Ion Concentration , Seawater , Soil
2.
Sci Adv ; 7(48): eabj2946, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34818051

ABSTRACT

The recent expansion of Atlantic waters into the Arctic Ocean represents undisputable evidence of the rapid changes occurring in this region. Understanding the past variability of this "Atlantification" is thus crucial in providing a longer perspective on the modern Arctic changes. Here, we reconstruct the history of Atlantification along the eastern Fram Strait during the past 800 years using precisely dated paleoceanographic records based on organic biomarkers and benthic foraminiferal data. Our results show rapid changes in water mass properties that commenced in the early 20th century­several decades before the documented Atlantification by instrumental records. Comparison with regional records suggests a poleward expansion of subtropical waters since the end of the Little Ice Age in response to a rapid hydrographic reorganization in the North Atlantic. Understanding of this mechanism will require further investigations using climate model simulations.

3.
Geophys Res Lett ; 47(15): e2020GL088561, 2020 Aug 16.
Article in English | MEDLINE | ID: mdl-32999517

ABSTRACT

Collapse of permafrost coasts delivers large quantities of particulate organic carbon (POC) to Arctic coastal areas. With rapidly changing environmental conditions, sediment and organic carbon (OC) mobilization and transport pathways are also changing. Here, we assess the sources and sinks of POC in the highly dynamic nearshore zone of Herschel Island-Qikiqtaruk (Yukon, Canada). Our results show that POC concentrations sharply decrease, from 15.9 to 0.3 mg L-1, within the first 100-300 m offshore. Simultaneously, radiocarbon ages of POC drop from 16,400 to 3,600 14C years, indicating rapid settling of old permafrost POC to underlying sediments. This suggests that permafrost OC is, apart from a very narrow resuspension zone (<5 m water depth), predominantly deposited in nearshore sediments. While long-term storage of permafrost OC in marine sediments potentially limits biodegradation and its subsequent release as greenhouse gas, resuspension of fine-grained, OC-rich sediments in the nearshore zone potentially enhances OC turnover.

4.
Global Biogeochem Cycles ; 33(1): 2-14, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31007381

ABSTRACT

Climate warming is expected to destabilize permafrost carbon (PF-C) by thaw-erosion and deepening of the seasonally thawed active layer and thereby promote PF-C mineralization to CO2 and CH4. A similar PF-C remobilization might have contributed to the increase in atmospheric CO2 during deglacial warming after the last glacial maximum. Using carbon isotopes and terrestrial biomarkers (Δ14C, δ13C, and lignin phenols), this study quantifies deposition of terrestrial carbon originating from permafrost in sediments from the Chukchi Sea (core SWERUS-L2-4-PC1). The sediment core reconstructs remobilization of permafrost carbon during the late Allerød warm period starting at 13,000 cal years before present (BP), the Younger Dryas, and the early Holocene warming until 11,000 cal years BP and compares this period with the late Holocene, from 3,650 years BP until present. Dual-carbon-isotope-based source apportionment demonstrates that Ice Complex Deposit-ice- and carbon-rich permafrost from the late Pleistocene (also referred to as Yedoma)-was the dominant source of organic carbon (66 ± 8%; mean ± standard deviation) to sediments during the end of the deglaciation, with fluxes more than twice as high (8.0 ± 4.6 g·m-2·year-1) as in the late Holocene (3.1 ± 1.0 g·m-2·year-1). These results are consistent with late deglacial PF-C remobilization observed in a Laptev Sea record, yet in contrast with PF-C sources, which at that location were dominated by active layer material from the Lena River watershed. Release of dormant PF-C from erosion of coastal permafrost during the end of the last deglaciation indicates vulnerability of Ice Complex Deposit in response to future warming and sea level changes.

5.
Global Biogeochem Cycles ; 33(1): 85-99, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31007382

ABSTRACT

Ongoing permafrost thaw in the Arctic may remobilize large amounts of old organic matter. Upon transport to the Siberian shelf seas, this material may be degraded and released to the atmosphere, exported off-shelf, or buried in the sediments. While our understanding of the fate of permafrost-derived organic matter in shelf waters is improving, poor constraints remain regarding degradation in sediments. Here we use an extensive data set of organic carbon concentrations and isotopes (n = 109) to inventory terrigenous organic carbon (terrOC) in surficial sediments of the Laptev and East Siberian Seas (LS + ESS). Of these ~2.7 Tg terrOC about 55% appear resistant to degradation on a millennial timescale. A first-order degradation rate constant of 1.5 kyr-1 is derived by combining a previously established relationship between water depth and cross-shelf sediment-terrOC transport time with mineral-associated terrOC loadings. This yields a terrOC degradation flux of ~1.7 Gg/year from surficial sediments during cross-shelf transport, which is orders of magnitude lower than earlier estimates for degradation fluxes of dissolved and particulate terrOC in the water column of the LS + ESS. The difference is mainly due to the low degradation rate constant of sedimentary terrOC, likely caused by a combination of factors: (i) the lower availability of oxygen in the sediments compared to fully oxygenated waters, (ii) the stabilizing role of terrOC-mineral associations, and (iii) the higher proportion of material that is intrinsically recalcitrant due to its chemical/molecular structure in sediments. Sequestration of permafrost-released terrOC in shelf sediments may thereby attenuate the otherwise expected permafrost carbon-climate feedback.

6.
Nat Commun ; 9(1): 806, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476050

ABSTRACT

The burial of terrestrial organic carbon (terrOC) in marine sediments contributes to the regulation of atmospheric CO2 on geological timescales and may mitigate positive feedback to present-day climate warming. However, the fate of terrOC in marine settings is debated, with uncertainties regarding its degradation during transport. Here, we employ compound-specific radiocarbon analyses of terrestrial biomarkers to determine cross-shelf transport times. For the World's largest marginal sea, the East Siberian Arctic shelf, transport requires 3600 ± 300 years for the 600 km from the Lena River to the Laptev Sea shelf edge. TerrOC was reduced by ~85% during transit resulting in a degradation rate constant of 2.4 ± 0.6 kyr-1. Hence, terrOC degradation during cross-shelf transport constitutes a carbon source to the atmosphere over millennial time. For the contemporary carbon cycle on the other hand, slow terrOC degradation brings considerable attenuation of the decadal-centennial permafrost carbon-climate feedback caused by global warming.

7.
Arch Environ Contam Toxicol ; 53(2): 159-67, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17549549

ABSTRACT

(210)Pb-derived sediment accumulation rates, as well as a suite of geochemical proxies (Al, Fe, delta(13)C, delta(15)N), were used to assess the time-dependent variations of C, N, and P fluxes recorded in two sediment cores collected at Ohuira Lagoon, in the Gulf of California, Mexico, during the last 100 years. Sedimentary C, N, and P concentrations increased with time and were related to land clearing, water impoundment, and agriculture practices, such as fertilization. C:N:P ratios and delta(13)C suggested an estuarine system that is responsive to increased C loading from a N-limited phytoplankton community, whereas delta(15)N values showed the transition between an estuarine-terrestrial to an estuarine-more marine environment, as a consequence of the declining freshwater supply into the estuary due to the channeling and impoundment of El Fuerte River between 1900 and 1956. The recent increases in nutrient fluxes (2- to 9-fold the pre-anthropogenic fluxes of C and N, and 2 to 13 times for P) taking place in the mainland from the 1940s, were related to the expansion of the intensive agriculture fields and to the more recent development of shrimp farming activities.


Subject(s)
Carbon/history , Geologic Sediments/analysis , Nitrogen/history , Phosphorus/history , Water Pollutants, Chemical/history , Carbon/analysis , Carbon Isotopes , History, 19th Century , History, 20th Century , History, 21st Century , Lead Radioisotopes , Mexico , Nitrogen/analysis , Nitrogen Isotopes , Phosphorus/analysis , Seawater , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...