Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9064, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643236

ABSTRACT

Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.


Subject(s)
Frontotemporal Dementia , Humans , Progranulins/metabolism , Frontotemporal Dementia/drug therapy , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Mutation , Epigenesis, Genetic , Bromodomain Containing Proteins , Cell Cycle Proteins/metabolism
2.
Cell Rep ; 20(11): 2565-2574, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28903038

ABSTRACT

Defective lysosomal function defines many neurodegenerative diseases, such as neuronal ceroid lipofuscinoses (NCL) and Niemann-Pick type C (NPC), and is implicated in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD-TDP) with progranulin (PGRN) deficiency. Here, we show that PGRN is involved in lysosomal homeostasis and lipid metabolism. PGRN deficiency alters lysosome abundance and morphology in mouse neurons. Using an unbiased lipidomic approach, we found that brain lipid composition in humans and mice with PGRN deficiency shows disease-specific differences that distinguish them from normal and other pathologic groups. PGRN loss leads to an accumulation of polyunsaturated triacylglycerides, as well as a reduction of diacylglycerides and phosphatidylserines in fibroblast and enriched lysosome lipidomes. Transcriptomic analysis of PGRN-deficient mouse brains revealed distinct expression patterns of lysosomal, immune-related, and lipid metabolic genes. These findings have implications for the pathogenesis of FTLD-TDP due to PGRN deficiency and suggest lysosomal dysfunction as an underlying mechanism.


Subject(s)
Intercellular Signaling Peptides and Proteins/deficiency , Lipid Metabolism , Metabolome , Transcriptome/genetics , Animals , Discriminant Analysis , Embryo, Mammalian/pathology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Profiling , Granulins , Hippocampus/pathology , Hippocampus/ultrastructure , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Lipids/isolation & purification , Liver/metabolism , Liver/pathology , Lysosomes/metabolism , Lysosomes/ultrastructure , Mice , Mice, Mutant Strains , Neurons/metabolism , Neurons/ultrastructure , Progranulins
3.
Proc Natl Acad Sci U S A ; 109(42): 17016-21, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-23027932

ABSTRACT

We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS). P7C3A20 is efficacious in this model when administered at disease onset, and protection from cell death correlates with preservation of motor function in assays of walking gait and in the accelerating rotarod test. The prototypical member of this series, P7C3, delays disease progression in G93A-SOD1 mice when administration is initiated substantially earlier than the expected time of symptom onset. Dimebon, an antihistaminergic drug with significantly weaker proneurogenic and neuroprotective efficacy than P7C3, confers no protection in this ALS model. We propose that the chemical scaffold represented by P7C3 and P7C3A20 may provide a basis for the discovery and optimization of pharmacologic agents for the treatment of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/prevention & control , Carbazoles/pharmacology , Motor Neurons/cytology , Neuroprotective Agents/pharmacology , Spinal Cord/cytology , Animals , Carbazoles/chemical synthesis , Carbazoles/chemistry , Carbazoles/pharmacokinetics , Indoles/pharmacokinetics , Indoles/pharmacology , Mice , Motor Activity/drug effects , Motor Activity/physiology , Motor Neurons/drug effects , Polymerase Chain Reaction , Rotarod Performance Test , Spinal Cord/drug effects
4.
Proc Natl Acad Sci U S A ; 109(42): 17010-5, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-23027934

ABSTRACT

We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the dentate gyrus. Here, we provide evidence that P7C3 also protects mature neurons in brain regions outside of the hippocampus. P7C3 blocks 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated cell death of dopaminergic neurons in the substantia nigra of adult mice, a model of Parkinson disease (PD). Dose-response studies show that the P7C3 analog P7C3A20 blocks cell death with even greater potency and efficacy, which parallels the relative potency and efficacy of these agents in blocking apoptosis of newborn neural precursor cells of the dentate gyrus. P7C3 and P7C3A20 display similar relative effects in blocking 1-methyl-4-phenylpyridinium (MPP(+))-mediated death of dopaminergic neurons in Caenorhabditis elegans, as well as in preserving C. elegans mobility following MPP(+) exposure. Dimebon, an antihistaminergic drug that is weakly proneurogenic and neuroprotective in the dentate gyrus, confers no protection in either the mouse or the worm models of PD. We further demonstrate that the hippocampal proneurogenic efficacy of eight additional analogs of P7C3 correlates with their protective efficacy in MPTP-mediated neurotoxicity. In vivo screening of P7C3 analogs for proneurogenic efficacy in the hippocampus may thus provide a reliable means of predicting neuroprotective efficacy. We propose that the chemical scaffold represented by P7C3 and P7C3A20 provides a basis for optimizing and advancing pharmacologic agents for the treatment of patients with PD.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/antagonists & inhibitors , 1-Methyl-4-phenylpyridinium/antagonists & inhibitors , Carbazoles/pharmacology , Dopaminergic Neurons/drug effects , Neuroprotective Agents/pharmacology , Parkinson Disease/prevention & control , Substantia Nigra/cytology , Animals , Apoptosis/drug effects , Caenorhabditis elegans , Carbazoles/chemical synthesis , Carbazoles/chemistry , Carbazoles/pharmacokinetics , Dose-Response Relationship, Drug , Hippocampus/cytology , Hippocampus/drug effects , Indoles/pharmacokinetics , Indoles/pharmacology , Mice , Mice, Inbred C57BL , Molecular Structure , Substantia Nigra/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...