Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773350

ABSTRACT

Does the brain track how fast our blood glucose is changing? Knowing such a rate of change would enable the prediction of an upcoming state and a timelier response to this new state. Hypothalamic arousal-orchestrating hypocretin/orexin neurons (HONs) have been proposed to be glucose sensors, yet whether they track glucose concentration (proportional tracking) or rate of change (derivative tracking) is unknown. Using simultaneous recordings of HONs and blood glucose in behaving male mice, we found that maximal HON responses occur in considerable temporal anticipation (minutes) of glucose peaks due to derivative tracking. Analysis of >900 individual HONs revealed glucose tracking in most HONs (98%), with derivative and proportional trackers working in parallel, and many (65%) HONs multiplexed glucose and locomotion information. Finally, we found that HON activity is important for glucose-evoked locomotor suppression. These findings reveal a temporal dimension of brain glucose sensing and link neurobiological and algorithmic views of blood glucose perception in the brain's arousal orchestrators.

2.
BMC Biol ; 20(1): 24, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35073895

ABSTRACT

BACKGROUND: A continued effort in neuroscience aims to understand the way brain circuits consisting of diverse neuronal types generate complex behavior following sensory input. A common feature of vertebrate visual systems is that lower-order and higher-order visual areas are reciprocally connected. Feedforward projections confer visual responsiveness to higher-order visual neurons while feedback projections likely serve to modulate responses of lower-order visual neurons in a context-dependent manner. Optic tectum is the largest first-order visual brain area in zebrafish and is reciprocally connected with the torus longitudinalis (TL), a second-order visual brain area that does not receive retinal input. A functional role for feedback projections from TL to tectum has not been identified. Here we aim to understand how this feedback contributes to visual processing. RESULTS: In this study, we demonstrate that TL feedback projections to tectum drive binocular integration and spatial summation in a defined tectal circuit. We performed genetically targeted, cell type-specific functional imaging in tectal pyramidal neurons (PyrNs) and their two input neuron populations: retinal ganglion cells (RGCs) and neurons in TL. We find that PyrNs encode gradual changes in scene luminance using a complement of three distinct response classes that encode different light intensity ranges. Functional imaging of RGC inputs to tectum suggest that these response classes originate in the retina and RGC input specifies PyrN functional classes. In contrast, TL input serves to endow PyrNs with large, compound receptive fields that span both retinal hemifields. CONCLUSIONS: These findings reveal a novel role for the zebrafish TL in driving binocular integration and spatial summation in tectal PyrNs. The neural circuit we describe generates a population of tectal neurons with large receptive fields tailored for detecting changes in the visual scene.


Subject(s)
Superior Colliculi , Zebrafish , Animals , Retina , Retinal Ganglion Cells/physiology , Superior Colliculi/physiology , Visual Pathways/physiology
3.
Front Neuroanat ; 15: 636683, 2021.
Article in English | MEDLINE | ID: mdl-33613200

ABSTRACT

The torus longitudinalis (TL) is a midbrain structure unique to ray finned fish. Although previously implicated in orienting behaviors elicited by changes in ambient lighting, the role of TL in visual processing is not well-understood. TL is reciprocally connected to tectum and is the only known source of synaptic input to the stratum marginalis (SM) layer of tectal neuropil. Conversely, tectal pyramidal neurons (PyrNs) are the only identified tectal neuron population that forms a dendrite in SM. In this study we describe a zebrafish gal4 transgenic that labels TL neurons that project to SM. We demonstrate that the axonal TL projection to SM in zebrafish is glutamatergic. Consistent with these axons synapsing directly onto PyrNs, SM-targeted dendrites of PyrNs contain punctate enrichments of the glutamatergic post-synaptic marker protein PSD95. Sparse genetic labeling of individual TL axons and PyrN dendrites enabled quantitative morphometric analysis that revealed (1) large, sparsely branched TL axons in SM and (2) small, densely innervated PyrN dendrites in SM. Together this unique combination of morphologies support a wiring diagram in which TL inputs to PyrNs exhibit a high degree of convergence. We propose that this convergence functions to generate large, compound visual receptive fields in PyrNs. This quantitative anatomical data will instruct future functional studies aimed at identifying the precise contribution of TL-PyrN circuitry to visual behavior.

4.
ACS Omega ; 4(13): 15504-15511, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31572851

ABSTRACT

Genetically encoded fluorescent and luminescent indicators have revolutionized our ability to monitor physiology in real time, but the separate development of new sensors for each of these imaging modalities involves substantial effort and resources. Methods to rapidly engineer multimodal sensors would, therefore, significantly accelerate the diversification of sensors for simultaneous use in different systems and applications. We hypothesized that the enhanced Nano-lanterns could be incorporated into modular ratiometric sensors as an efficient approach to creating dual-mode fluorescent-luminescent sensors. As a proof-of-concept, we engineered an Epac1-based sensor that responds to cyclic adenosine monophosphate binding with a greater than 80% change in both Förster Resonance Energy Transfer and bioluminescent resonance energy transfer (BRET) modes. We also demonstrate that our new sensor reports cellular changes in G-protein-coupled signaling, and that the ratiometric BRET mode is bright enough for subcutaneous measurements in mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...