Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
2.
medRxiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38947021

ABSTRACT

Nigeria and Cameroon reported their first mpox cases in over three decades in 2017 and 2018 respectively. The outbreak in Nigeria is recognised as an ongoing human epidemic. However, owing to sparse surveillance and genomic data, it is not known whether the increase in cases in Cameroon is driven by zoonotic or sustained human transmission. Notably, the frequency of zoonotic transmission remains unknown in both Cameroon and Nigeria. To address these uncertainties, we investigated the zoonotic transmission dynamics of the mpox virus (MPXV) in Cameroon and Nigeria, with a particular focus on the border regions. We show that in these regions mpox cases are still driven by zoonotic transmission of a newly identified Clade IIb.1. We identify two distinct zoonotic lineages that circulate across the Nigeria-Cameroon border, with evidence of recent and historic cross border dissemination. Our findings support that the complex cross-border forest ecosystems likely hosts shared animal populations that drive cross-border viral spread, which is likely where extant Clade IIb originated. We identify that the closest zoonotic outgroup to the human epidemic circulated in southern Nigeria in October 2013. We also show that the zoonotic precursor lineage circulated in an animal population in southern Nigeria for more than 45 years. This supports findings that southern Nigeria was the origin of the human epidemic. Our study highlights the ongoing MPXV zoonotic transmission in Cameroon and Nigeria, underscoring the continuous risk of MPXV (re)emergence.

3.
medRxiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38947052

ABSTRACT

Five years before the 2022-2023 global mpox outbreak Nigeria reported its first cases in nearly 40 years, with the ongoing epidemic since driven by sustained human-to-human transmission. However, limited genomic data has left questions about the timing and origin of the mpox virus' (MPXV) emergence. Here we generated 112 MPXV genomes from Nigeria from 2021-2023. We identify the closest zoonotic outgroup to the human epidemic in southern Nigeria, and estimate that the lineage transmitting from human-to-human emerged around July 2014, circulating cryptically until detected in September 2017. The epidemic originated in Southern Nigeria, particularly Rivers State, which also acted as a persistent and dominant source of viral dissemination to other states. We show that APOBEC3 activity increased MPXV's evolutionary rate twenty-fold during human-to-human transmission. We also show how Delphy, a tool for near-real-time Bayesian phylogenetics, can aid rapid outbreak analytics. Our study sheds light on MPXV's establishment in West Africa before the 2022-2023 global outbreak and highlights the need for improved pathogen surveillance and response.

5.
PLOS Glob Public Health ; 4(5): e0003153, 2024.
Article in English | MEDLINE | ID: mdl-38728356

ABSTRACT

As of December 2022, Cameroon had observed a slight resurgence of COVID-19, raising concerns on genomic surveillance of related-SARS-CoV-2 variants under circulation. Following a laboratory-based survey, positive SARS-CoV-2 samples detected from December-2022 through March-2023 were processed for targeted sequencing at the Chantal BIYA International Reference Centre (CIRCB) in Yaoundé-Cameroon. From all positive cases detected, 13 were successfully sequenced (mean age 34 years, 70% female); the majority of the cases were unvaccinated (70%, 9/13) and symptomatic (92%, 12/13); all with flu-like symptoms (100%, 12/12). Following RT-PCR, the median cycle threshold was 22.23 [18-24] for the N gene; and 24.09 [20-26] for the ORF gene, underscoring high viral loads. Phylogenetic analysis of nucleotide sequences identified four major sub-variants in circulation, of which BA.5 (3/13), the recombinants BQ.1.1 (4/13), XBB.1 (4/13) and novel atypical variant of BA.4.6/XBB.1 (2/13). This snapshot surveillance indicates the introduction/emergence and circulation of new Omicron sub-variants, all accompanied by minor/mild symptoms. However, these new sub-variants and recombinants call for continuous genomic surveillance to prevent further resurgence of Covid-19 epidemiological wave.

7.
Lancet Infect Dis ; 24(2): e106-e112, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37778362

ABSTRACT

Next-generation sequencing (NGS) of genomic data has established its fundamental value in public health surveillance, research and development, and precision medicine. In Africa, severe shortages of competent experts in genomics and bioinformatics, few opportunities for research, and inadequate genomic infrastructure have had a knock-on effect on the use of NGS technologies for research and public health practice. Several reasons-ranging from poor funding, inadequate infrastructure for training and practice, to brain drain-might partly account for the scarcity of genomics and bioinformatics expertise in the region. In recognition of these shortcomings and the importance of NGS genomic data, which was amplified during the COVID-19 pandemic in mid-2021, the Africa Centres for Disease Control and Prevention (Africa CDC) through the Africa Pathogen Genomics Initiative began building and expanding Africa's workforce in pathogen surveillance. By the end of 2022, the Africa CDC in collaboration with its partners and centres of excellence had trained 413 personnel, mostly from public health institutions, in 53 (96%) of 55 African Union Member States. Although this training has increased genomics, bioinformatics, and genomic epidemiology literacy, and genomic-informed pathogen surveillance, there is still a need for a strategic and sustainable public health workforce development in Africa.


Subject(s)
Genomics , Pandemics , Humans , Africa/epidemiology , Computational Biology , Workforce
8.
Malar J ; 22(1): 376, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087335

ABSTRACT

BACKGROUND: Plasmodium falciparum genetic diversity can add information on transmission intensity and can be used to track control and elimination interventions. METHODS: Dried blood spots (DBS) were collected from patients who were recruited for a P. falciparum malaria therapeutic efficacy trial in three malaria endemic sites in Ethiopia from October to December 2015, and November to December 2019. qPCR-confirmed infections were subject to amplicon sequencing of polymorphic markers ama1-D3, csp, cpp, cpmp, msp7. Genetic diversity, the proportion of multiclonal infections, multiplicity of infection, and population structure were analysed. RESULTS: Among 198 samples selected for sequencing, data was obtained for 181 samples. Mean MOI was 1.38 (95% CI 1.24-1.53) and 17% (31/181) of infections were polyclonal. Mean He across all markers was 0.730. Population structure was moderate; populations from Metema and Metehara 2015 were very similar to each other, but distinct from Wondogent 2015 and Metehara 2019. CONCLUSION: The high level of parasite genetic diversity and moderate population structure in this study suggests frequent gene flow of parasites among sites. The results obtained can be used as a baseline for additional parasite genetic diversity and structure studies, aiding in the formulation of appropriate control strategies in Ethiopia.


Subject(s)
Malaria, Falciparum , Parasites , Humans , Animals , Plasmodium falciparum/genetics , Ethiopia/epidemiology , Genetic Variation , Malaria, Falciparum/parasitology , High-Throughput Nucleotide Sequencing
9.
Influenza Other Respir Viruses ; 17(9): e13198, 2023 09.
Article in English | MEDLINE | ID: mdl-37744993

ABSTRACT

Background: In Angola, COVID-19 cases have been reported in all provinces, resulting in >105,000 cases and >1900 deaths. However, no detailed genomic surveillance into the introduction and spread of the SARS-CoV-2 virus has been conducted in Angola. We aimed to investigate the emergence and epidemic progression during the peak of the COVID-19 pandemic in Angola. Methods: We generated 1210 whole-genome SARS-CoV-2 sequences, contributing West African data to the global context, that were phylogenetically compared against global strains. Virus movement events were inferred using ancestral state reconstruction. Results: The epidemic in Angola was marked by four distinct waves of infection, dominated by 12 virus lineages, including VOCs, VOIs, and the VUM C.16, which was unique to South-Western Africa and circulated for an extended period within the region. Virus exchanges occurred between Angola and its neighboring countries, and strong links with Brazil and Portugal reflected the historical and cultural ties shared between these countries. The first case likely originated from southern Africa. Conclusion: A lack of a robust genome surveillance network and strong dependence on out-of-country sequencing limit real-time data generation to achieve timely disease outbreak responses, which remains of the utmost importance to mitigate future disease outbreaks in Angola.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Angola/epidemiology , Molecular Epidemiology , Pandemics
11.
Open Forum Infect Dis ; 10(Suppl 1): S38-S46, 2023 May.
Article in English | MEDLINE | ID: mdl-37274533

ABSTRACT

The global response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic demonstrated the value of timely and open sharing of genomic data with standardized metadata to facilitate monitoring of the emergence and spread of new variants. Here, we make the case for the value of Salmonella Typhi (S. Typhi) genomic data and demonstrate the utility of freely available platforms and services that support the generation, analysis, and visualization of S. Typhi genomic data on the African continent and more broadly by introducing the Africa Centres for Disease Control and Prevention's Pathogen Genomics Initiative, SEQAFRICA, Typhi Pathogenwatch, TyphiNET, and the Global Typhoid Genomics Consortium.

12.
Commun Biol ; 6(1): 619, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291425

ABSTRACT

Mozambique is one of the four African countries which account for over half of all malaria deaths worldwide, yet little is known about the parasite genetic structure in that country. We performed P. falciparum amplicon and whole genome sequencing on 2251 malaria-infected blood samples collected in 2015 and 2018 in seven provinces of Mozambique to genotype antimalarial resistance markers and interrogate parasite population structure using genome-wide microhaplotyes. Here we show that the only resistance-associated markers observed at frequencies above 5% were pfmdr1-184F (59%), pfdhfr-51I/59 R/108 N (99%) and pfdhps-437G/540E (89%). The frequency of pfdhfr/pfdhps quintuple mutants associated with sulfadoxine-pyrimethamine resistance increased from 80% in 2015 to 89% in 2018 (p < 0.001), with a lower expected heterozygosity and higher relatedness of microhaplotypes surrounding pfdhps mutants than wild-type parasites suggestive of recent selection. pfdhfr/pfdhps quintuple mutants also increased from 72% in the north to 95% in the south (2018; p < 0.001). This resistance gradient was accompanied by a concentration of mutations at pfdhps-436 (17%) in the north, a south-to-north increase in the genetic complexity of P. falciparum infections (p = 0.001) and a microhaplotype signature of regional differentiation. The parasite population structure identified here offers insights to guide antimalarial interventions and epidemiological surveys.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Mozambique , Plasmodium falciparum/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria/drug therapy , Drug Resistance/genetics , Whole Genome Sequencing , Genetic Structures
14.
Front Epidemiol ; 3: 1227071, 2023.
Article in English | MEDLINE | ID: mdl-38455947

ABSTRACT

To accelerate malaria elimination in the Southern African region by 2030, it is essential to prevent cross-border malaria transmission. However, countries within the region are highly interconnected due to human migration that aids in the movement of the parasite across geographical borders. It is therefore important to better understand Plasmodium falciparum transmission dynamics in the region, and identify major parasite source and sink populations, as well as cross-border blocks of high parasite connectivity. We performed a meta-analysis using collated parasite allelic data generated by microsatellite genotyping of malaria parasites from Namibia, Eswatini, South Africa, and Mozambique (N = 5,314). The overall number of unique alleles was significantly higher (P ≤ 0.01) in Namibia (mean A = 17.3 ± 1.46) compared to South Africa (mean A = 12.2 ± 1.22) and Eswatini (mean A = 13.3 ± 1.27, P ≤ 0.05), whilst the level of heterozygosity was not significantly different between countries. The proportion of polyclonal infections was highest for Namibia (77%), and lowest for Mozambique (64%). A was significant population structure was detected between parasites from the four countries, and patterns of gene flow showed that Mozambique was the major source area and Eswatini the major sink area of parasites between the countries. This study showed strong signals of parasite population structure and genetic connectivity between malaria parasite populations across national borders. This calls for strengthening the harmonization of malaria control and elimination efforts between countries in the southern African region. This data also proves its potential utility as an additional surveillance tool for malaria surveillance on both a national and regional level for the identification of imported cases and/or outbreaks, as well as monitoring for the potential spread of anti-malarial drug resistance as countries work towards malaria elimination.

15.
PLoS Biol ; 20(8): e3001769, 2022 08.
Article in English | MEDLINE | ID: mdl-35998195

ABSTRACT

We propose a novel, non-discriminatory classification of monkeypox virus diversity. Together with the World Health Organization, we named three clades (I, IIa and IIb) in order of detection. Within IIb, the cause of the current global outbreak, we identified multiple lineages (A.1, A.2, A.1.1 and B.1) to support real-time genomic surveillance.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Disease Outbreaks , Genomics , Humans , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Monkeypox virus/genetics
16.
Viruses ; 14(6)2022 06 16.
Article in English | MEDLINE | ID: mdl-35746789

ABSTRACT

Seychelles, an archipelago of 155 islands in the Indian Ocean, had confirmed 24,788 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the 31st of December 2021. The first SARS-CoV-2 cases in Seychelles were reported on the 14th of March 2020, but cases remained low until January 2021, when a surge was observed. Here, we investigated the potential drivers of the surge by genomic analysis of 1056 SARS-CoV-2 positive samples collected in Seychelles between 14 March 2020 and 31 December 2021. The Seychelles genomes were classified into 32 Pango lineages, 1042 of which fell within four variants of concern, i.e., Alpha, Beta, Delta and Omicron. Sporadic cases of SARS-CoV-2 detected in Seychelles in 2020 were mainly of lineage B.1 (lineage predominantly observed in Europe) but this lineage was rapidly replaced by Beta variant starting January 2021, and which was also subsequently replaced by the Delta variant in May 2021 that dominated till November 2021 when Omicron cases were identified. Using the ancestral state reconstruction approach, we estimated that at least 78 independent SARS-CoV-2 introduction events occurred in Seychelles during the study period. The majority of viral introductions into Seychelles occurred in 2021, despite substantial COVID-19 restrictions in place during this period. We conclude that the surge of SARS-CoV-2 cases in Seychelles in January 2021 was primarily due to the introduction of more transmissible SARS-CoV-2 variants into the islands.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , SARS-CoV-2/genetics , Seychelles/epidemiology
17.
J Infect Dis ; 225(7): 1227-1237, 2022 04 01.
Article in English | MEDLINE | ID: mdl-32840625

ABSTRACT

BACKGROUND: Targeted next-generation sequencing offers the potential for consistent, deep coverage of information-rich genomic regions to characterize polyclonal Plasmodium falciparum infections. However, methods to identify and sequence these genomic regions are currently limited. METHODS: A bioinformatic pipeline and multiplex methods were developed to identify and simultaneously sequence 100 targets and applied to dried blood spot (DBS) controls and field isolates from Mozambique. For comparison, whole-genome sequencing data were generated for the same controls. RESULTS: Using publicly available genomes, 4465 high-diversity genomic regions suited for targeted sequencing were identified, representing the P. falciparum heterozygome. For this study, 93 microhaplotypes with high diversity (median expected heterozygosity = 0.7) were selected along with 7 drug resistance loci. The sequencing method achieved very high coverage (median 99%), specificity (99.8%), and sensitivity (90% for haplotypes with 5% within sample frequency in dried blood spots with 100 parasites/µL). In silico analyses revealed that microhaplotypes provided much higher resolution to discriminate related from unrelated polyclonal infections than biallelic single-nucleotide polymorphism barcodes. CONCLUSIONS: The bioinformatic and laboratory methods outlined here provide a flexible tool for efficient, low-cost, high-throughput interrogation of the P. falciparum genome, and can be tailored to simultaneously address multiple questions of interest in various epidemiological settings.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Haplotypes , High-Throughput Nucleotide Sequencing/methods , Humans , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Whole Genome Sequencing/methods
19.
Int J Parasitol Drugs Drug Resist ; 16: 155-161, 2021 08.
Article in English | MEDLINE | ID: mdl-34146993

ABSTRACT

Artemisinin resistance (AR) emerged in South East Asia 13 years ago and the identification of the resistance conferring molecular marker, Plasmodium falciparum Kelch 13 (Pfk13), 7 years ago has provided an invaluable tool for monitoring AR in malaria endemic countries. Molecular Pfk13 surveillance revealed the resistance foci in the Greater Mekong Subregion, an independent emergence in Guyana, South America, and a low frequency of mutations in Africa. The recent identification of the R561H Pfk13 AR associated mutation in Tanzania, Uganda and in Rwanda, where it has been associated with delayed parasite clearance, should be a concern for the continent. In this review, we provide a summary of Pfk13 resistance associated propeller domain mutation frequencies across Africa from 2012 to 2020, to examine how many other countries have identified these mutations. Only four African countries reported a recent identification of the M476I, P553L, R561H, P574L, C580Y and A675V Pfk13 mutations at low frequencies and with no reports of clinical treatment failure, except for Rwanda. These mutations present a threat to malaria control across the continent, since the greatest burden of malaria remains in Africa. A rise in the frequency of these mutations and their spread would reverse the gains made in the reduction of malaria over the last 20 years, given the lack of new antimalarial treatments in the event artemisinin-based combination therapies fail. The review highlights the frequency of Pfk13 propeller domain mutations across Africa, providing an up-to-date perspective of Pfk13 mutations, and appeals for an urgent and concerted effort to monitoring antimalarial resistance markers in Africa and the efficacy of antimalarials by re-establishing sentinel surveillance systems.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Africa/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance/genetics , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
20.
Malar J ; 20(1): 68, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33531029

ABSTRACT

BACKGROUND: Evaluation of genetic relatedness of malaria parasites is a useful tool for understanding transmission patterns, but patterns are not easily detectable in areas with moderate to high malaria transmission. To evaluate the feasibility of detecting genetic relatedness in a moderate malaria transmission setting, relatedness of Plasmodium falciparum infections was measured in cohort participants from randomly selected households in the Kihihi sub-county of Uganda (annual entomological inoculation rate of 27 infectious bites per person). METHODS: All infections detected via microscopy or Plasmodium-specific loop mediated isothermal amplification from passive and active case detection during August 2011-March 2012 were genotyped at 26 microsatellite loci, providing data for 349 samples from 230 participants living in 80 households. Pairwise genetic relatedness was calculated using identity by state (IBS). RESULTS: As expected, genetic diversity was high (mean heterozygosity [He] = 0.73), and the majority (76.5 %) of samples were polyclonal. Despite the high genetic diversity, fine-scale population structure was detectable, with significant spatiotemporal clustering of highly related infections. Although the difference in malaria incidence between households at higher (mean 1127 metres) versus lower elevation (mean 1015 metres) was modest (1.4 malaria cases per person-year vs. 1.9 per person-year, respectively), there was a significant difference in multiplicity of infection (2.2 vs. 2.6, p = 0.008) and, more strikingly, a higher proportion of highly related infections within households (6.3 % vs. 0.9 %, p = 0.0005) at higher elevation compared to lower elevation. CONCLUSIONS: Genetic data from a relatively small number of diverse, multiallelic loci reflected fine scale patterns of malaria transmission. Given the increasing interest in applying genetic data to augment malaria surveillance, this study provides evidence that genetic data can be used to inform transmission patterns at local spatial scales even in moderate transmission areas.


Subject(s)
Genotype , Malaria, Falciparum/epidemiology , Microsatellite Repeats , Plasmodium falciparum/genetics , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Humans , Incidence , Malaria, Falciparum/parasitology , Middle Aged , Uganda/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...