Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
New Phytol ; 238(5): 1924-1941, 2023 06.
Article in English | MEDLINE | ID: mdl-36918499

ABSTRACT

An environmentally responsive root system is crucial for plant growth and crop yield, especially in suboptimal soil conditions. This responsiveness enables the plant to exploit regions of high nutrient density while simultaneously minimizing abiotic stress. Despite the vital importance of root systems in regulating plant growth, significant gaps of knowledge exist in the mechanisms that regulate their architecture. Auxin defines both the frequency of lateral root (LR) initiation and the rate of LR outgrowth. Here, we describe a search for proteins that regulate root system architecture (RSA) by interacting directly with a key auxin transporter, PIN1. The native separation of Arabidopsis plasma membrane protein complexes identified several PIN1 co-purifying proteins. Among them, AZG1 was subsequently confirmed as a PIN1 interactor. Here, we show that, in Arabidopsis, AZG1 is a cytokinin (CK) import protein that co-localizes with and stabilizes PIN1, linking auxin and CK transport streams. AZG1 expression in LR primordia is sensitive to NaCl, and the frequency of LRs is AZG1-dependent under salt stress. This report therefore identifies a potential point for auxin:cytokinin crosstalk, which shapes RSA in response to NaCl.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytokinins , Membrane Transport Proteins , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytokinins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plant Roots/metabolism , Sodium Chloride
2.
New Phytol ; 229(2): 979-993, 2021 01.
Article in English | MEDLINE | ID: mdl-33070379

ABSTRACT

Cytokinin and auxin are key regulators of plant growth and development. During the last decade transport mechanisms have turned out to be the key for the control of local and long-distance hormone distributions. In contrast with auxin, cytokinin transport is poorly understood. Here, we show that Arabidopsis thaliana AZG2, a member of the AZG purine transporter family, acts as cytokinin transporter involved in root system architecture determination. Even though purines are substrates for both AZG1 and AZG2, we found distinct transport mechanisms. The expression of AZG2 is restricted to a small group of cells surrounding the lateral root (LR) primordia and induced by auxins. Compared to the wild-type (WT), mutants carrying loss-of-function alleles of AZG2 have higher LR density, suggesting that AZG2 is part of a regulatory pathway in LR emergence. Moreover, azg2 is partially insensitive to exogenous cytokinin, which is consistent with the observation that the cytokinin reporter TCSnpro :GFP showed lower fluorescence signal in the roots of azg2 compared to the WT. These results indicate a defective cytokinin signalling pathway in the region of LR primordia. The integration of AZG2 subcellular localization and cytokinin transport capacity data allowed us to propose a local cytokinin : auxin signalling model for the regulation of LR emergence.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytokinins/metabolism , Plant Roots/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids
SELECTION OF CITATIONS
SEARCH DETAIL