Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virol J ; 19(1): 134, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986298

ABSTRACT

BACKGROUND: Bovine viral diarrhea virus 1 (BVDV-1) of the pestivirus genus is an economically crippling virus in the cattle industry; this positive RNA virus causes mucosal disease resulting in reproductive losses and other disease syndromes. The pathogenesis mechanism of the disease caused by BVDV infection is not well understood; for a better understanding of in vivo host BVDV-1 interactions, we conducted a transcriptomic study of infected cells at different times post-infection. METHODS: We compared the permissiveness and cellular response of a BVDV-1 cytopathogenic strain on Madin-Darby Bovine Kidney cells (MDBK) and bovine lung primary cells, a model closer to in vivo infection. Then a RNAseq analysis was realized on the infected bovine lung primary cells, at 10 hpi and 30 hpi (hours post-infection), to identify transcriptomic signatures. RESULTS: RNAseq analysis on BVDV-1 infected bovine primary cells showed 2,759 and 5,376 differentially expressed genes at respectively 10 hpi and 30 hpi with an absolute Fold Change ≥ 2. Among the different pathways deregulated, data analysis revealed a deregulation of Wnt signaling pathway, a conserved process that play a critical role in embryogenesis, cellular proliferation, and differentiation as well as in viral responses against viruses such as Influenza or Hepatitis C. We demonstrated here that the deregulation of the Wnt/ßcatenin signaling pathway plays a role in viral replication of BVDV cp strain. Interestingly, we showed that the inhibition of this Wnt pathway using two inhibitors, FZM1 and iCRT14, induced a delay in onset of the establishment of a cytopathic effect of primary cells. CONCLUSIONS: Thereby, this study highlighted a role of the Wnt signaling pathway in the BVDV-1 viral replication in bovine cells, suggesting an interesting option to explore as a new therapeutic target.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Viruses, Bovine Viral , Animals , Bovine Virus Diarrhea-Mucosal Disease/genetics , Cattle , Cell Line , Cytopathogenic Effect, Viral , Diarrhea Viruses, Bovine Viral/genetics , Virus Replication/genetics , Wnt Signaling Pathway
2.
Virology ; 567: 34-46, 2022 02.
Article in English | MEDLINE | ID: mdl-34953294

ABSTRACT

The bovine viral diarrhea virus 1 (BVDV-1), belonging to the Pestivirus genus, is characterized by the presence of two biotypes, cytopathogenic (cp) or non-cytopathogenic (ncp). For a better understanding of the host pathogen interactions, we set out to identify transcriptomic signatures of bovine lung primary cells (BPCs) infected with a cp or a ncp strain. For this, we used both a targeted approach by reverse transcription droplet digital PCR and whole genome approach using RNAseq. Data analysis showed 3571 differentially expressed transcripts over time (Fold Change >2) and revealed that the most deregulated pathways for cp strain are signaling pathways involved in responses to viral infection such as inflammatory response or apoptosis pathways. Interestingly, our data analysis revealed a deregulation of Wnt signaling pathway, a pathway described in embryogenesis, that was specifically seen with the BVDV-1 cp but not the ncp suggesting a role of this pathway in viral replication.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Bovine Virus Diarrhea-Mucosal Disease/genetics , Cytopathogenic Effect, Viral/genetics , Diarrhea Virus 1, Bovine Viral/genetics , Transcriptome , Wnt Signaling Pathway/genetics , Animals , Apoptosis/genetics , Apoptosis Regulatory Proteins/metabolism , Bovine Virus Diarrhea-Mucosal Disease/metabolism , Bovine Virus Diarrhea-Mucosal Disease/pathology , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle , Diarrhea Virus 1, Bovine Viral/metabolism , Diarrhea Virus 1, Bovine Viral/pathogenicity , Epithelial Cells/metabolism , Epithelial Cells/virology , Gene Expression Profiling , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Interleukins/genetics , Interleukins/metabolism , Lung/metabolism , Lung/virology , Membrane Potential, Mitochondrial , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/virology , NF-kappa B/genetics , NF-kappa B/metabolism , Primary Cell Culture , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...