Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 114(5): 917-929, 2024 May.
Article in English | MEDLINE | ID: mdl-38170665

ABSTRACT

Fruit and vegetable crops are important sources of nutrition and income globally. Producing these high-value crops requires significant investment of often scarce resources, and, therefore, the risks associated with climate change and accompanying disease pressures are especially important. Climate change influences the occurrence and pressure of plant diseases, enabling new pathogens to emerge and old enemies to reemerge. Specific environmental changes attributed to climate change, particularly temperature fluctuations and intense rainfall events, greatly alter fruit and vegetable disease incidence and severity. In turn, fruit and vegetable microbiomes, and subsequently overall plant health, are also affected by climate change. Changing disease pressures cause growers and researchers to reassess disease management and climate change adaptation strategies. Approaches such as climate smart integrated pest management, smart sprayer technology, protected culture cultivation, advanced diagnostics, and new soilborne disease management strategies are providing new tools for specialty crops growers. Researchers and educators need to work closely with growers to establish fruit and vegetable production systems that are resilient and responsive to changing climates. This review explores the effects of climate change on specialty food crops, pathogens, insect vectors, and pathosystems, as well as adaptations needed to ensure optimal plant health and environmental and economic sustainability.


Subject(s)
Climate Change , Crops, Agricultural , Fruit , Plant Diseases , Vegetables , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Diseases/statistics & numerical data , Fruit/microbiology , Vegetables/microbiology , Crops, Agricultural/microbiology
2.
Plant Dis ; : PDIS05230857RE, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-37814515

ABSTRACT

Anaerobic soil disinfestation (ASD) is a nonchemical soil treatment where an easily decomposable carbon source is incorporated into soil, which is then irrigated to saturation and tarped to create anaerobic conditions, which prompts shifts in the soil microbiota from aerobes to anaerobes. ASD has been tested successfully for soilborne disease management in a variety of cropping systems but has not been sufficiently investigated in ornamentals. In this study, ASD was evaluated in soil-based and soilless substrates commonly used in specialty cut flower production using two model pathosystems: Rhizoctonia solani-Zinnia elegans and Phytophthora drechsleri-Gerbera jamesonii. Each substrate was mixed with pathogen-infested vermiculite and amended with either wheat bran, tomato pomace, or soybean meal as the carbon source. Amended substrates were incubated at 25°C for 4 weeks and used as growing substrates for the two crops mentioned above, which were monitored weekly for disease development for up to 5 weeks posttransplant. Additional experiments tested the effect of plant age and inoculum concentration in the substrate on ASD efficacy. Results showed that ASD has the potential to be deployed successfully for the control of Rhizoctonia stem rot in both substrates. Conversely, ASD was not effective at controlling Phytophthora crown rot on gerbera daisy in any of the experiments conducted in this study. More research is needed to understand the influence of carbon amendments, inoculum thresholds, and environmental conditions on ASD efficacy.

3.
Plant Dis ; 107(9): 2673-2678, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36774576

ABSTRACT

Corky root rot is an important disease in tomato production systems and is caused by Pseudopyrenochaeta terrestris and P. lycopersici (formerly Pyrenochaeta lycopersici Types 1 and 2, respectively). The corky root rot pathogens are slow growing and difficult to isolate and quantify in soil and plant tissue. A multiplex hydrolysis probe-based qPCR assay was designed to allow for simultaneous detection and quantification of P. lycopersici and P. terrestris with a competitive internal control to indicate if qPCR inhibitors are present. Single species and multiplex assays for Pseudopyrenochaeta spp. detected DNA levels above 0.013 pg of DNA per reaction. These highly specific assays had no nontarget amplification of other fungal and oomycete pathogens or rhizosphere-associated fungi of tomatoes that were tested. This assay can be used to quantify Pseudopyrenochaeta populations in roots and soils in tomato production systems to better determine the impacts of disease management strategies on Pseudopyrenochaeta spp. and provides a tool to study the biology of Pseudopyrenochaeta spp.


Subject(s)
Solanum lycopersicum , Plant Diseases/microbiology , Polymerase Chain Reaction , DNA
4.
Phytopathology ; 111(6): 954-965, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33174823

ABSTRACT

Tomato production in Ohio protected culture systems is hindered by a soilborne disease complex consisting of corky root rot (Pyrenochaeta lycopersici), black dot root rot (Colletotrichum coccodes), Verticillium wilt (Verticillium dahliae), and root-knot (Meloidogyne hapla and M. incognita). In a survey of 71 high tunnels, C. coccodes was detected in 90% of high tunnels, and P. lycopersici (46%), V. dahliae (48%), and Meloidogyne spp. (45%) were found in nearly half of high tunnels. Anaerobic soil disinfestation (ASD) with wheat bran (20.2 Mg/ha) plus molasses (10.1 Mg/ha) and grafting onto 'Maxifort' or 'Estamino' rootstocks were evaluated in high tunnels on five farms. In post-ASD bioassays of trial soils, root and taproot rot severity were significantly reduced after ASD, and root-knot galling was also reduced by ASD. Soilborne pathogenic fungi were isolated less frequently from bioassay plants grown in ASD-treated soils than control soils. Similar results were observed in tomato plants grown in high tunnels. Root rot was significantly reduced by ASD in nearly all trials. Corky root rot severity was highest in nongrafted plants grown in nontreated soils, and the lowest levels of corky root rot were observed in 'Maxifort'-grafted plants. Black dot root rot severity was higher or equivalent in grafted plants compared with nongrafted plants. Root-knot severity was lower in plants grown in ASD-treated soils in high tunnels compared with plants grown in control soils, but grafting did not significantly decrease root-knot severity. However, soil treatment did not significantly affect yield, and grafting led to inconsistent impacts on yield.


Subject(s)
Solanum lycopersicum , Verticillium , Anaerobiosis , Ascomycota , Colletotrichum , Farms , Plant Diseases/prevention & control , Soil
5.
Phytopathology ; 110(4): 795-804, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31935337

ABSTRACT

Experiments were conducted to evaluate potential functional and mechanistic differences in the suppression of Sclerotinia sclerotiorum and S. minor and root-knot nematodes in muck soils by anaerobic soil disinfestation (ASD) using different carbon source amendments. Volatile compounds produced during ASD in muck soil amended with molasses, wheat bran, or mustard greens at 20.2 Mg/ha or a 2% ethanol solution significantly reduced the mycelial growth and number of sclerotia produced by both Sclerotinia spp. compared with the anaerobic control. In amended soils, acetic and butyric acids were detected in concentrations that reduced the viability of sclerotia of both pathogens. Higher concentrations of carbon dioxide were observed in ASD-treated soils, regardless of the amendment, than in the nonamended anaerobic control. Only amendment with wheat bran did not increase the production of methane gas during ASD compared with the controls. Meloidogyne hapla survival was completely suppressed in soils treated with ASD regardless of carbon source. Field trials were conducted in Ohio muck soil to assess survival of sclerotia of both Sclerotinia spp. The viability of sclerotia of both Sclerotinia spp. was significantly reduced in soil subjected to ASD amended with wheat bran (20.2 Mg/ha), molasses (10.1 Mg/ha), or wheat bran (20.2 Mg/ha) plus molasses (10.1 Mg/ha) compared with the controls. A consistent negative correlation between soil reduction and viability of sclerotia of both pathogens was observed. Wheat bran and molasses are both widely available amendments that can be used as ASD carbon sources for the management of soilborne pathogens in muck soils.


Subject(s)
Ascomycota , Soil , Anaerobiosis , Animals , Ohio , Plant Diseases , Soil Microbiology
6.
Plant Dis ; 103(7): 1757-1762, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31082319

ABSTRACT

Anaerobic soil disinfestation (ASD) was evaluated as a tool for managing the root-knot nematode Meloidogyne hapla in lettuce (Lactuca sativa) and clubroot disease, caused by Plasmodiophora brassicae, in mustard greens (Brassica juncea) produced on Ohio muck soils in Huron and Stark Counties. In two consecutive years of field trials, wheat bran (20.2 Mg ha-1), molasses (10.1 Mg ha-1), and wheat bran (20.2 Mg ha-1) plus molasses (10.1 Mg ha-1) were assessed as ASD carbon sources and compared with nonamended controls. Data were collected from plants grown in the field and from plants grown in field-treated soils in growth chamber-based post-ASD bioassays. Anaerobic conditions developed in ASD-treated soils in both trial years, as indicated by polyvinyl chloride pipes painted with an iron oxide paint. Soil pH did not decrease during ASD at the Huron County site of the mustard greens clubroot trials in either trial year but soil pH decreased significantly during ASD in Stark County soils treated with ASD with either wheat bran or wheat bran plus molasses compared with control soils in both trial years. Impacts of ASD on plant biomass were inconsistent in direct field measurements; however, significantly higher biomasses were observed in lettuce and mustard greens grown in bioassay soils collected from plots treated with ASD with wheat bran-based amendments compared with plants grown in soils from control plots. Based on direct field measurements and bioassays, the use of ASD with any carbon source led to significant reductions in root-knot nematode galling on lettuce compared with controls. Reductions in clubroot severity in mustard greens following ASD were less consistent; however, significant reductions in clubroot severity were observed in the field in one trial year and in both years of bioassays. The results of these studies indicate that ASD is a promising tool for managing soilborne diseases in muck soil vegetable production systems.


Subject(s)
Agriculture , Disinfection , Lactuca , Soil , Tylenchoidea , Agriculture/methods , Anaerobiosis , Animals , Disinfection/methods , Lactuca/parasitology , Mustard Plant/parasitology , Ohio , Plasmodiophorida/physiology , Soil/parasitology , Tylenchoidea/physiology
7.
Phytopathology ; 107(11): 1298-1304, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28613108

ABSTRACT

Recently, in Central Florida tomato production fields, tomato foliage and fruit were observed with symptoms similar to bacterial speck. Fluorescent pseudomonads were consistently isolated and the strains were characterized by standard LOPAT tests, pathogenicity tests, and genetic characterization using 16S ribosomal RNA (rRNA) sequences and multilocus sequence analysis (MLSA) of conserved housekeeping genes. LOPAT test results indicated that the strains were likely Pseudomonas cichorii. These strains were pathogenic on tomato and were also pathogenic on lettuce, the host for the type strain of P. cichorii. Likewise, strains of P. cichorii isolated in Florida since the early 1980s from hosts other than tomato, along with the type strain, were also pathogenic on tomato. Genetic characterization using 16S rRNA and MLSA confirmed that the strains were most closely related to P. cichorii but varied significantly from the type strain. The Florida P. cichorii strains formed a separate phylogenetic group along with P. cichorii strains isolated from tomato in Tanzania. These strains were different from the previously described morphotypes and genomovars of P. cichorii. Our results indicate the presence of a genetically distinct group of multihost pathogenic P. cichorii strains that have been present in Florida since at least the early 1980s.


Subject(s)
Plant Diseases/microbiology , Pseudomonas/classification , Pseudomonas/genetics , Solanum lycopersicum/microbiology , Florida , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Time Factors
8.
Phytopathology ; 104(4): 379-86, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24224871

ABSTRACT

Quinoa (Chenopodium quinoa) is an important export of the Andean region, and its key disease is quinoa downy mildew, caused by Peronospora variabilis. P. variabilis oospores can be seedborne and rapid methods to detect seedborne P. variabilis have not been developed. In this research, a polymerase chain reaction (PCR)-based detection method was developed to detect seedborne P. variabilis and a sequencing-based method was used to validate the PCR-based method. P. variabilis was detected in 31 of 33 quinoa seed lots using the PCR-based method and in 32 of 33 quinoa seed lots using the sequencing-based method. Thirty-one of the quinoa seed lots tested in this study were sold for human consumption, with seed originating from six different countries. Internal transcribed spacer (ITS) and cytochrome c oxidase subunit 2 (COX2) phylogenies were examined to determine whether geographical differences occurred in P. variabilis populations originating from Ecuador, Bolivia, and the United States. No geographical differences were observed in the ITS-derived phylogeny but the COX2 phylogeny indicated that geographical differences existed between U.S. and South American samples. Both ITS and COX2 phylogenies supported the existence of a Peronospora sp., distinct from P. variabilis, that causes systemic-like downy mildew symptoms on quinoa in Ecuador. The results of these studies allow for a better understanding of P. variabilis populations in South America and identified a new causal agent for quinoa downy mildew. The PCR-based seed detection method allows for the development of P. variabilis-free quinoa seed, which may prove important for management of quinoa downy mildew.


Subject(s)
Chenopodium quinoa/parasitology , Genetic Variation , Peronospora/isolation & purification , Plant Diseases/parasitology , Seeds/parasitology , Base Sequence , DNA Primers/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Geography , Molecular Sequence Data , Peronospora/classification , Peronospora/genetics , Phylogeny , Sensitivity and Specificity , Sequence Analysis, DNA , South America , Time Factors , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...