Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 18(8): 3158-3170, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34292741

ABSTRACT

Cell-free hemoglobin (Hb) is a driver of disease progression in conditions with intravascular or localized hemolysis. Genetic and acquired anemias or emergency medical conditions such as aneurysmal subarachnoid hemorrhage involve tissue Hb exposure. Haptoglobin (Hp) captures Hb in an irreversible protein complex and prevents its pathophysiological contributions to vascular nitric oxide depletion and tissue oxidation. Preclinical proof-of-concept studies suggest that human plasma-derived Hp is a promising therapeutic candidate for several Hb-driven diseases. Optimizing the efficacy and safety of Hb-targeting biotherapeutics may require structural and functional modifications for specific indications. Improved Hp variants could be designed to achieve the desired tissue distribution, metabolism, and elimination to target hemolytic disease states effectively. However, it is critical to ensure that these modifications maintain the function of Hp. Using transient mammalian gene expression of Hp combined with co-transfection of the pro-haptoglobin processing protease C1r-LP, we established a platform for generating recombinant Hp-variants. We designed an Hpß-scaffold, which was expressed in this system at high levels as a monomeric unit (mini-Hp) while maintaining the key protective functions of Hp. We then used this Hpß-scaffold as the basis to develop an initial proof-of-concept Hp fusion protein using human serum albumin as the fusion partner. Next, a hemopexin-Hp fusion protein with bispecific heme and Hb detoxification capacity was generated. Further, we developed a Hb scavenger devoid of CD163 scavenger receptor binding. The functions of these proteins were then characterized for Hb and heme-binding, binding of the Hp-Hb complexes with the clearance receptor CD163, antioxidant properties, and vascular nitric oxide sparing capacity. Our platform is designed to support the generation of innovative Hb scavenger biotherapeutics with novel modes of action and potentially improved formulation characteristics, function, and pharmacokinetics.


Subject(s)
Biological Products/metabolism , Drug Design/methods , Haptoglobins/metabolism , Hemoglobins/metabolism , Hemopexin/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Basilar Artery/drug effects , Biological Products/chemistry , Biological Products/pharmacology , HEK293 Cells , Haptoglobins/chemistry , Haptoglobins/genetics , Heme/metabolism , Hemoglobins/chemistry , Hemolysis , Hemopexin/chemistry , Hemopexin/genetics , Humans , Protein Binding , Receptors, Cell Surface/metabolism , Receptors, Scavenger/metabolism , Recombinant Fusion Proteins/genetics , Serum Albumin, Human/chemistry , Serum Albumin, Human/genetics , Serum Albumin, Human/metabolism , Swine , Transfection , Vasodilation/drug effects
2.
Protein Expr Purif ; 159: 75-82, 2019 07.
Article in English | MEDLINE | ID: mdl-30917921

ABSTRACT

The ability to engineer monoclonal antibodies (mAbs) with high specificity made mAbs the fastest growing segment in the drug market. mAbs represent 8 of the top 20 selling drugs with combined sales of more than 57 billion US$ per year. The ability to purify large numbers of mAbs with sufficient yields for initial screening campaigns has direct impact on the timelines of a project. Automated liquid handling (ALH)-based mAb purification platforms have been used to facilitate the production of large numbers of mAbs. However, the ongoing pressure to de-risk potential lead molecules at an early development stage by including bio-physical characterization of mAbs has further increased the demand to produce sufficient quantities from limited sample volumes. A bottleneck so far has been the limited dynamic binding capacity of these systems, which is partly due to the binding properties of commonly used Protein A affinity matrices. The present publication suggests that by using a Protein A matrix optimized for continuous chromatography applications the yields of ALH-based but also standard lab-scale mAb purifications can be significantly increased without the need to change established protocols.


Subject(s)
Antibodies, Monoclonal/chemistry , Recombinant Fusion Proteins/chemistry , Antibodies, Monoclonal/genetics , Cells, Cultured , Chromatography, Affinity , High-Throughput Screening Assays/methods , Humans , Recombinant Fusion Proteins/genetics , Robotics , Staphylococcal Protein A/chemistry , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...