Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(5): e16216, 2023 May.
Article in English | MEDLINE | ID: mdl-37234642

ABSTRACT

Among the primary alcohols, ethanol is referred to as a heavy chemical due to its many applications in a variety of industries. Detection of primary alcohols can be deployed as a non-invasive method in medical diagnosis and safety measures in food processing companies. Zirconium disulphide is a novel 2D layered material with exotic features when in mono or few layers, which include fast electron transport, high carrier mobility and sizeable band gap. ZrS2 and PANI were fabricated using liquid exfoliation and chemical polymerization methods respectively. Functionalization of the conducting polyaniline with ZrS2 was done using facile sonication process. The sensor showed good sensitivities (43%, 58% and 104%) which were estimated from slopes of the linear fitted plots with fast response-recovery times of 8 s and 27 s (111 ppm); 12 s and 130 s (77 ppm); and 58 s and 88 s (58 ppm). Good reproducibility at three repeated measurements (111 ppm, 77 ppm and 58 ppm) was also observed for methanol, ethanol, and isopropanol vapours respectively. Meanwhile, the sensor displayed more linearity and sensitivity towards isopropanol compared to methanol and ethanol. The sensor showed good performance even at RH values close to 100% making it a potential alcohol breath analyser.

2.
Int J Mol Sci ; 23(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35457128

ABSTRACT

Rapid population and economic growth, excessive use of fossil fuels, and climate change have contributed to a serious turn towards environmental management and sustainability. The agricultural sector is a big contributor to (lignocellulosic) waste, which accumulates in landfills and ultimately gets burned, polluting the environment. In response to the current climate-change crisis, policymakers and researchers are, respectively, encouraging and seeking ways of creating value-added products from generated waste. Recently, agricultural waste has been regularly appearing in articles communicating the production of a range of carbon and polymeric materials worldwide. The extraction of cellulose nanocrystals (CNCs) and carbon quantum dots (CQDs) from biomass waste partially occupies some of the waste-recycling and management space. Further, the new materials generated from this waste promise to be effective and competitive in emerging markets. This short review summarizes recent work in the area of CNCs and CQDs synthesised from biomass waste. Synthesis methods, properties, and prospective application of these materials are summarized. Current challenges and the benefits of using biomass waste are also discussed.


Subject(s)
Cellulose , Nanoparticles , Biomass , Carbon/chemistry , Cellulose/chemistry , Lignin , Nanoparticles/chemistry
3.
Beilstein J Nanotechnol ; 11: 1834-1846, 2020.
Article in English | MEDLINE | ID: mdl-33364142

ABSTRACT

Core-shell based nanostructures are attractive candidates for photocatalysis owing to their tunable physicochemical properties, their interfacial contact effects, and their efficacy in charge-carrier separation. This study reports, for the first time, on the synthesis of mesoporous silica@nickel phyllosilicate/titania (mSiO2@NiPS/TiO2) core-shell nanostructures. The TEM results showed that the mSiO2@NiPS composite has a core-shell nanostructure with a unique flake-like shell morphology. XPS analysis revealed the successful formation of 1:1 nickel phyllosilicate on the SiO2 surface. The addition of TiO2 to the mSiO2@NiPS yielded the mSiO2@NiPS/TiO2 composite. The bandgap energy of mSiO2@NiPS and of mSiO2@NiPS/TiO2 were estimated to be 2.05 and 2.68 eV, respectively, indicating the role of titania in tuning the optoelectronic properties of the SiO2@nickel phyllosilicate. As a proof of concept, the core-shell nanostructures were used as photocatalysts for the degradation of methyl violet dye and the degradation efficiencies were found to be 72% and 99% for the mSiO2@NiPS and the mSiO2@NiPS/TiO2 nanostructures, respectively. Furthermore, a recyclability test revealed good stability and recyclability of the mSiO2@NiPS/TiO2 photocatalyst with a degradation efficacy of 93% after three cycles. The porous flake-like morphology of the nickel phyllosilicate acted as a suitable support for the TiO2 nanoparticles. Further, a coating of TiO2 on the mSiO2@NiPS surface greatly affected the surface features and optoelectronic properties of the core-shell nanostructure and yielded superior photocatalytic properties.

4.
Nanomaterials (Basel) ; 10(9)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32916877

ABSTRACT

Herein we report on the use of different metal precursors in the synthesis of MoSe2 nanomaterials in order to control their morphology. The use of Mo(CO)6 as the metal precursor resulted in the formation of wrinkled few-layer nanosheets, while the use of H2MoO4 as the metal precursor resulted in the formation of nanoflowers. To investigate the effect of the morphologies on their performance as catalysts in the hydrogen evolution reaction, electrochemical characterization was done using linear sweep voltammetry (LSV), cyclic voltammetry (CV), and electrical impedance spectroscopy (EIS). The MoSe2 nanoflowers were found to have superior electrochemical performance towards the hydrogen evolution reaction with a lower Tafel slope, on-set potential, and overpotential at 10 mA/cm2 compared to the wrinkled few-layer nanosheets. This was found to be due to the higher effective electrochemical surface area of the nanoflowers compared to the nanosheets which suggests a higher number of exposed edge sites in the nanoflowers.

5.
ACS Omega ; 5(32): 20461-20472, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32832799

ABSTRACT

A Ni-based metal-organic framework (Ni-MOF) has been synthesized using a microwave-assisted strategy and converted to nanostructured Ni/MOF-derived mesoporous carbon (Ni/MOFDC) by carbonization and acid treatment (AT-Ni/MOFDC). The materials are well characterized with Raman, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and Brunauer-Emmett-Teller (BET), revealing that chemical etching confers on the AT-Ni/MOFDC-reduced average nanoparticle size (high surface area) and structural defects including oxygen vacancies. AT-Ni/MOFDC displays low series resistances and a higher specific capacity (C s) of 199 mAh g-1 compared to Ni/MOFDC (92 mAh g-1). This study shows that the storage mechanism of the Ni-based electrode as a battery-type energy storage (BTES) system can be controlled by both non-faradic and faradic processes and dependent on the sweep rate or current density. AT-Ni/MOFDC reveals mixed contributions at different rates: 75.2% faradic and 24.8% non-faradic contributions at 5 mV s-1, and 34.1% faradic and 65.9% non-faradic at 50 mV s-1. The full BTES device was assembled with AT-Ni/MOFDC as the cathode and acetylene black (AB) as the anode. Compared to recent literature, the AT-Ni/MOFDC//AB BTES device exhibits high energy (33 Wh kg-1) and high power (983 W kg-1) with excellent cycling performance (about 88% capacity retention over 2000 cycles). This new finding opens a window of opportunity for the rational designing of next-generation energy storage devices, supercapatteries, that combine the characteristics of batteries (high energy) and supercapacitors (high power).

6.
Nanotechnology ; 24(12): 125203, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23466515

ABSTRACT

We report the preparation of write-once-read-many times memory devices using composites of carbon nanotubes and poly(vinyl phenol) sandwiched between Al electrodes. Three types of nanotubes (undoped multiwalled carbon nanotubes, nitrogen-doped multiwalled carbon nanotubes and boron-doped multiwalled carbon nanotubes) are investigated for this application. The OFF to ON state switching threshold is only slightly dependent on nanotube type, but the ON/OFF current ratio depends on both nanotube type and concentration and varies up to 10(6), decreasing for nanotube concentrations larger than 0.50 wt% in the composite.

SELECTION OF CITATIONS
SEARCH DETAIL
...