Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35591654

ABSTRACT

The comprehensive properties of high-entropy alloys (HEAs) are highly-dependent on their phases. Although a large number of machine learning (ML) algorithms has been successfully applied to the phase prediction of HEAs, the accuracies among different ML algorithms based on the same dataset vary significantly. Therefore, selection of an efficient ML algorithm would significantly reduce the number and cost of the experiments. In this work, phase prediction of HEAs (PPH) is proposed by integrating criterion and machine learning recommendation method (MLRM). First, a meta-knowledge table based on characteristics of HEAs and performance of candidate algorithms is established, and meta-learning based on the meta-knowledge table is adopted to recommend an algorithm with desirable accuracy. Secondly, an MLRM based on improved meta-learning is engineered to recommend a more desirable algorithm for phase prediction. Finally, considering poor interpretability and generalization of single ML algorithms, a PPH combining the advantages of MLRM and criterion is proposed to improve the accuracy of phase prediction. The PPH is validated by 902 samples from 12 datasets, including 405 quinary HEAs, 359 senary HEAs, and 138 septenary HEAs. The experimental results shows that the PPH achieves performance than the traditional meta-learning method. The average prediction accuracy of PPH in all, quinary, senary, and septenary HEAs is 91.6%, 94.3%, 93.1%, and 95.8%, respectively.

2.
Rev Sci Instrum ; 93(1): 013703, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35104987

ABSTRACT

Three dimensional freeze printing (3DFP) combines the advantages of freeze casting and additive manufacturing to fabricate multifunctional aerogels. Freeze casting is a cost-effective, efficient, and versatile method capable of fabricating micro-scale porous structures inside the aerogels for many different applications. The 3DFP provided the capability of fabricating highly customized geometries with controlled microporous structures as well. However, there are still many unexplained phenomena and features because of the complexity of post-processes and indirect observation methods. This study demonstrates the design and construction of the in situ imaging systems, which use the x-ray synchrotron radiography to observe freeze casting and 3DFP processes. With the advantages provided by the in situ x-ray imaging techniques, the ice crystal growth with its unique lamellar structures can be observed during the freeze casting process. The movement of freeze front, material deposition, and growth of ice crystals can also be visualized during the inkjet-based 3DFP process.

3.
Adv Mater ; 34(2): e2104980, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34757650

ABSTRACT

Assembling 2D materials such as MXenes into functional 3D aerogels using 3D printing technologies gains attention due to simplicity of fabrication, customized geometry and physical properties, and improved performance. Also, the establishment of straightforward electrode fabrication methods with the aim to hinder the restack and/or aggregation of electrode materials, which limits the performance of the electrode, is of great significant. In this study, unidirectional freeze casting and inkjet-based 3D printing are combined to fabricate macroscopic porous aerogels with vertically aligned Ti3 C2 Tx sheets. The fabrication method is developed to easily control the aerogel microstructure and alignment of the MXene sheets. The aerogels show excellent electromechanical performance so that they can withstand almost 50% compression before recovering to the original shape and maintain their electrical conductivities during continuous compression cycles. To enhance the electrochemical performance, an inkjet-printed MXene current collector layer is added with horizontally aligned MXene sheets. This combines the superior electrical conductivity of the current collector layer with the improved ionic diffusion provided by the porous electrode. The cells fabricated with horizontal MXene sheets alignment as current collector with subsequent vertical MXene sheets alignment layers show the best electrochemical performance with thickness-independent capacitive behavior.

4.
ACS Appl Mater Interfaces ; 13(1): 924-931, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33397082

ABSTRACT

The freeze casting process has been widely used for fabricating aerogels due to its versatile and environmentally friendly nature. This process offers a variety of tools to tailor the entire micropore morphology of the final product in a monolithic fashion through manipulation of the freezing kinetics and precursor suspension chemistry. However, aerogels with nonmonolithic micropore morphologies, having pores of various sizes located in certain regions of the aerogels, are highly desired by certain applications such as controlled drug-delivery, bone tissue engineering, extracellular simulation, selective liquid sorption, immobilized catalysts, and separators. Furthermore, aerogels composed of micropores with predesigned size, shape, and location can open up a new paradigm in aerogel design and lead to new applications. In this study, a general manufacturing approach is developed to control the size, shape, and location of the pores on the aerogel surface by applying a precise control on the local thermal conductivity of the substrate used in a unidirectional freeze casting process. With our method, we created patterned low and high thermal conductivity regions on the substrate by depositing patterned photoresist polymer features. The photoresist polymer has a much lower thermal conductivity, which resulted in lower cooling/freezing rates compared to the silicon substrate. Patterned thermal conductivity created a designed temperature profile yielding to local regions with faster and slower freezing rates. Essentially, we fabricated aerogels whose micropore morphology on their surface was a replica of the patterned substrates in terms of size and location of the micropores. Using the same substrates, we further showed the possibility of 3D printed aerogels with precisely controlled, surface micropore morphologies. To the best of our knowledge, this is the first study that reports aerogels having micropore morphologies (e.g., size, shape, and location) that are precisely controlled through locally controlled thermal conductivity of the substrates.

5.
RSC Adv ; 11(13): 7187-7204, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-35423256

ABSTRACT

Magnetic materials have brought innovations in the field of advanced materials. Their incorporation in aerogels has certainly broadened their application area. Magnetic aerogels can be used for various purposes from adsorbents to developing electromagnetic interference shielding and microwave absorbing materials, high-level diagnostic tools, therapeutic systems, and so on. Considering the final use and cost, these can be fabricated from a variety of materials using different approaches. To date, several studies have been published reporting the fabrication and uses of magnetic aerogels. However, to our knowledge, there is no review that specifically focuses only on magnetic aerogels, so we attempted to overview the main developments in this field and ended our study with the conclusion that magnetic aerogels are one of the emerging and futuristic advanced materials with the potential to offer multiple applications of high value.

SELECTION OF CITATIONS
SEARCH DETAIL
...