Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38776788

ABSTRACT

A study was performed for the development and validation of a method of High Performance Liquid Chromatography (HPLC) for the identification and simultaneous quantification of Gallein and Human Serum Albumin (HSA). In addition, this work presents the development and physicochemical characterization of this new pharmaceutical formulation of HSA nanoparticles loaded with Gallein for potential use in the treatment of Alzheimer's disease. The method was developed with the purpose of determining the performance of the synthesis process of nanoparticles and the efficiency of encapsulation of the drug in the nanosystem. The HPLC mobile phase consisted of ACN:H2O:TEA:H3PO4 (50:49.8:0.1:0.1 v/v/v) pumped at a flow rate of 0.8 mL/min, isocratic mode, and the measurement were carried out at 220 nm. Chromatographic runs were performed on a C18 column (150 × 4.60 mm; 5 µm size particles). The HPLC-method was validated following the International Conference on Harmonisation (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines and was used to simultaneously quantify the two components of the nanoformulation. Thus, the values obtained through the validated method were 43 % for drug encapsulation efficiency (% EE) and the synthesis performance (% yield) was 96 %. Moreover, the nanoformulation was characterized by DLS, the results showed that the average particle size was 217 nm, with a PDI of (0.085 ± 0.005) and a potential Z of -29.7 mV. Therefore, the developed method has proven useful in providing accurate simultaneous measurements of HSA and Gallein from albumin nanoparticles. It is advantageous since it is able to reduce the time and facilitate the determination of Gallein encapsulation efficiency and yield of albumin nanoparticles.


Subject(s)
Nanoparticles , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Humans , Nanoparticles/chemistry , Linear Models , Chromatography, Reverse-Phase/methods , Serum Albumin, Human/chemistry , Serum Albumin, Human/analysis , Limit of Detection
2.
Photochem Photobiol Sci ; 22(12): 2735-2758, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37787958

ABSTRACT

In this communication luminescent bioconjugated human serum albumin nanostructures (HSA NPs) with tiny ultraluminescent gold core-shell silica nanoparticles (Au@SiO2-Fl) were designed with enhanced bi-coloured luminescence properties. The HSA NPs were obtained from Human Serum Albumin free (HSA free) through the desolvation method, and Au@SiO2-Fl, through modified Turkevich and Störber methods. In this manner, porous HSA Nanostructures of 150.0-200 nm and Au@SiO2-Fl 45.0 nm final diameters were obtained. Both methodologies and structures were conjugated to obtain modified Nanocomposites based on tiny gold cores of 15 nm surrounded with well spatial Nanostructured architectures of HSA (d15 Au@SiO2-Fl-HSA) that generated variable nanopatterns depending on the modified methodology of synthesis applied within colloidal dispersions. Therefore, three methodologies of non-covalent conjugation were developed. In optimal conditions, through Transmission Electronic Microscopy (TEM), well resolved multilayered nano-architectures with a size 190.0-200 nm in average with variable contrast depending of the focused nanomaterial within the nanocomposite were shown. Optimized nanoarchitecture was based on a template tiny gold core-shell surrounded by nanostructured HSA NPs (d15 Au@SiO2-Fl-HSA). In this manner, the NanoImaging generated by laser fluorescence microscopy permitted to record improved optical properties and functionalities, such as: (i) enhanced ultraluminescent d15 Au@SiO2-Fl-HSA composites in comparison to individual components based on Metal Enhanced Fluorescence (MEF); (ii) diminished photobleaching; (iii) higher dispersibility; (iv) higher resolution of single bright nano-emitters of 210.0 nm sizes; and (v) enhanced bi-coloured Bio-MEF coupling with potential non-classical light delivery towards other non-optical active biostructures for varied applications. The characterization of these nanocomposites allowed the comparison, evaluation and discussion focused on new properties generated and functionalities based on the incorporation of different types of tuneable materials. In this context, the biocompatibility, Cargo confined spaces, protein-based materials, optical transparent could be highlighted, as well as optical active materials. Thus, the potential applications of nanotechnology to both nanomedicine and nano-pharmaceutics were discussed.


Subject(s)
Luminescence , Nanocomposites , Humans , Serum Albumin, Human , Silicon Dioxide/chemistry , Nanocomposites/chemistry , Gold/chemistry , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...