Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 9: 917921, 2022.
Article in English | MEDLINE | ID: mdl-35677878

ABSTRACT

Lipid-based nanosystems enable intracellular delivery of drugs in the oral cavity for the treatment of local diseases. To rationally design such systems, suitable matrix compositions and particle properties need to be identified, and manufacturing technologies that allow reproducible production have to be applied. This is a prerequisite for the reliable and predictable performance of in-vitro biological studies. Here, we showed that solid lipid nanoparticles (SLN, palmitic acid) and nanostructured lipid carriers (NLC, palmitic acid and oleic acid in different ratios) with a size of 250 nm, a negative zeta potential, and a polydispersity index (PdI) of less than 0.3 can be reproducibly prepared by high-pressure homogenization using quality by design and a predictive model. SLN and NLC were colloidally stable after contact with physiological fluid and did not form agglomerates. The in-vitro studies clearly showed that besides particle size, surface charge and hydrophobicity, matrix composition had a significant effect. More specifically, the addition of the liquid lipid oleic acid increased the cellular uptake capacity without changing the underlying uptake mechanism. Regardless of the matrix composition, caveolin-mediated endocytosis was the major route of uptake, which was confirmed by particle localization in the endoplasmic reticulum. Thus, this work provides useful insights into the optimal composition of lipid carrier systems to enhance the intracellular uptake capacity of drugs into the oral mucosa.

2.
Int J Pharm ; 509(1-2): 518-527, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-26541301

ABSTRACT

We present our recent advancements in developing a viable manufacturing process for printed medicine. Our approach involves using a non-contact printing system that incorporates both piezoelectric- and solenoid valve-based inkjet printing technologies, to deliver both active and inactive pharmaceutical materials onto medical-graded orodispersible films. By using two complimentary inkjet technologies, we were able to dispense an extensive range of fluids, from aqueous drug solutions to viscous polymer coating materials. Essentially, we demonstrate printing of a wide range of formulations for patient-ready, orodispersible drug dosage forms, without the risk of drug degradation by ink heating and of substrate damages (by contact printing). In addition, our printing process has been optimized to ensure that the drug doses can be loaded onto the orally dissolvable films without introducing defects, such as holes or tears, while retaining a smooth surface texture that promotes patient adherence and allows for uniform post-coatings. Results show that our platform technology can address key issues in manufacturing orodispersible drug dosage forms and bring us closer to delivering personalized and precision medicine to targeted patient populations.


Subject(s)
Pharmaceutical Preparations/chemistry , Printing/methods , Technology, Pharmaceutical/methods , Administration, Oral , Chemistry, Pharmaceutical/methods , Dosage Forms , Drug Delivery Systems/methods , Excipients/chemistry , Pharmaceutical Solutions/chemistry , Precision Medicine/methods , Surface Properties , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...