Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 120(22): 225902, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29906135

ABSTRACT

Experiments on self-diffusion in amorphous silicon (Si) were performed at temperatures between 460 to 600° C. The amorphous structure was prepared by Si ion implantation of single crystalline Si isotope multilayers epitaxially grown on a silicon-on-insulator wafer. The Si isotope profiles before and after annealing were determined by means of secondary ion mass spectrometry. Isothermal diffusion experiments reveal that structural relaxation does not cause any significant intermixing of the isotope interfaces whereas self-diffusion is significant before the structure recrystallizes. The temperature dependence of self-diffusion is described by an Arrhenius law with an activation enthalpy Q=(2.70±0.11) eV and preexponential factor D_{0}=(5.5_{-3.7}^{+11.1})×10^{-2} cm^{2} s^{-1}. Remarkably, Q equals the activation enthalpy of hydrogen diffusion in amorphous Si, the migration of bond defects determining boron diffusion, and the activation enthalpy of solid phase epitaxial recrystallization reported in the literature. This close agreement provides strong evidence that self-diffusion is mediated by local bond rearrangements rather than by the migration of extended defects as suggested by Strauß et al. (Phys. Rev. Lett. 116, 025901 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.025901).

2.
J Neurosci Methods ; 235: 181-8, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25033725

ABSTRACT

In recent times, the relevance of an accurate diagnosis of attention-deficit/hyperactivity disorder (ADHD) in adults has been the focus of several studies. No longer considered a pathology exclusive to children and adolescents, and taking into account its social implications, developing enhanced support tools for the current diagnostic procedure becomes a priority. Here we present a method for the objective assessment of ADHD in adults using chirp-evoked, paired auditory late responses (ALRs) combined with a two-dimensional ALR denoising scheme to extract correlates of intracortical inhibition. Our method allows for an effective single-sweep denoising, thus requiring less trials to obtain recognizable physiological features, useful as pointers of cortical impairment. Results allow an optimized diagnosis, reduction of data loss and acquisition time; moreover, they do not account exclusively for critical elements within clinical evaluations, but also allow studying the pathophysiology of the condition by providing objective information regarding impaired cortical functions.


Subject(s)
Attention Deficit Disorder with Hyperactivity/physiopathology , Auditory Perception/physiology , Cerebral Cortex/physiopathology , Electroencephalography/methods , Evoked Potentials, Auditory/physiology , Neural Inhibition/physiology , Acoustic Stimulation/methods , Adult , Artifacts , Attention Deficit Disorder with Hyperactivity/diagnosis , Female , Humans , Male , Middle Aged , Signal Processing, Computer-Assisted , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...