Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35957325

ABSTRACT

Introduction: Ski deflection is a performance-relevant factor in alpine skiing and the segmental and temporal curvature characteristics (m−1) along the ski have lately received particular attention. Recently, we introduced a PyzoFlex® ski deflection measurement prototype that demonstrated high reliability and validity in a quasi-static setting. The aim of the present work is to test the performance of an enhanced version of the prototype in a dynamic setting both in a skiing-like bending simulation as well as in a field proof-of-concept measurement. Material and methods: A total of twelve sensor foils were implemented on the upper surface of the ski. The ski sensors were calibrated with an empirical curvature model and then deformed on a programmable bending robot with the following program: 20 times at three different deformation velocities (vslow, vmedium, vfast) with (1) central bending, (2) front bending, (3) back bending, (4) edging left, and (5) edging right. For reliability assessment, pairs of bending cycles (cycle 1 vs. cycle 10 and cycle 10 vs. cycle 20) at vslow, vmedium, and vfast and between pairs of velocity (vslow vs. vmedium and vslow vs. vfast) were evaluated by calculating the change in the mean (CIM), coefficient of variation (CV) and intraclass correlation coefficient (ICC 3.1) with a 95% confidence interval. For validity assessment, the calculated segment-wise mean signals were compared with the values that were determined by 36 infrared markers that were attached to the ski using an optoelectrical measuring system (Qualisys). Results: High reliability was found for pairs of bending cycles (CIM −0.69−0.24%, max CV 0.28%, ICC 3.1 > 0.999) and pairs of velocities (max CIM = 3.03%, max CV = 3.05%, ICC 3.1 = 0.997). The criterion validity based on the Pearson correlation coefficient was r = 0.98. The accuracy (systematic bias) and precision (standard deviation), were −0.003 m−1 and 0.047 m−1, respectively. Conclusions: The proof-of-concept field measurement has shown that the prototype is stable, robust, and waterproof and provides characteristic curvature progressions with plausible values. Combined with the high laboratory-based reliability and validity of the PyzoFlex® prototype, this is a potential candidate for smart ski equipment.


Subject(s)
Skiing , Computer Simulation , Reproducibility of Results
2.
Clin Biomech (Bristol, Avon) ; 89: 105452, 2021 10.
Article in English | MEDLINE | ID: mdl-34481198

ABSTRACT

BACKGROUND: Machine learning approaches for the classification of pathological gait based on kinematic data, e.g. derived from inertial sensors, are commonly used in terms of a multi-class classification problem. However, there is a lack of research regarding one-class classifiers that are independent of certain pathologies. Therefore, it was the aim of this work to design a one-class classifier based on healthy norm-data that provides not only a prediction probability but rather an explanation of the classification decision, increasing the acceptance of this machine learning approach. METHODS: The inertial sensor based gait kinematics of 25 healthy subjects was employed to train a one-class support vector machine. 25 healthy subjects, 20 patients after total hip arthroplasty and one transfemoral amputee served to validate the classifier. Prediction probabilities and feature importance scores were estimated for each subject. FINDINGS: The support vector machine predicted 100% of the patients as outliers from the healthy group. Three healthy subjects were predicted as outliers. The feature importance calculation revealed the hip in the sagittal plane as most relevant feature concerning the group after total hip arthroplasty. For the misclassified healthy subject with the lowest probability score the knee flexion and the pelvis obliquity were identified. INTERPRETATION: The support vector machine seems a useful tool to identify outliers from a healthy norm-group. The feature importance examination proved to provide valuable information on the musculoskeletal status of the subjects. In this combination, the present approach could be employed in various disciplines to identify abnormal gait and suggest subsequent training.


Subject(s)
Arthroplasty, Replacement, Hip , Support Vector Machine , Biomechanical Phenomena , Gait , Humans , Machine Learning
3.
Sensors (Basel) ; 22(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35009590

ABSTRACT

So far, no studies of material deformations (e.g., bending of sports equipment) have been performed to measure the curvature (w″) using an optoelectronic measurement system OMS. To test the accuracy of the w″ measurement with an OMS (Qualisys), a calibration profile which allowed to: (i) differentiates between three w″ (0.13˙ m-1, 0.2 m-1, and 0.4 m-1) and (ii) to explore the influence of the chosen infrared marker distances (50 mm, 110 mm, and 170 mm) was used. The profile was moved three-dimensional at three different mean velocities (vzero = 0 ms-1, vslow = 0.2 ms-1, vfast  = 0.4 ms-1) by an industrial robot. For the accuracy assessment, the average difference between the known w″ of the calibration profile and the detected w″ from the OMS system, the associated standard deviation (SD) and the measuring point with the largest difference compared to the defined w″ (=maximum error) were calculated. It was demonstrated that no valid w″ can be measured at marker distances of 50 mm and only to a limited extent at 110 mm. For the 170 mm marker distance, the average difference (±SD) between defined and detected w″ was less than 1.1 ± 0.1 mm-1 in the static and not greater than -3.8 ± 13.1 mm-1 in the dynamic situations. The maximum error in the static situation was small (4.0 mm-1), while in the dynamic situations there were single interfering peaks causing the maximum error to be larger (-30.2 mm-1 at a known w″ of 0.4 m-1). However, the Qualisys system measures sufficiently accurately to detect curvatures up to 0.13˙ m-1 at a marker distance of 170 mm, but signal fluctuations due to marker overlapping can occur depending on the direction of movement of the robot arm, which have to be taken into account.


Subject(s)
Movement , Calibration
4.
Sensors (Basel) ; 20(16)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781583

ABSTRACT

Many machine learning models show black box characteristics and, therefore, a lack of transparency, interpretability, and trustworthiness. This strongly limits their practical application in clinical contexts. For overcoming these limitations, Explainable Artificial Intelligence (XAI) has shown promising results. The current study examined the influence of different input representations on a trained model's accuracy, interpretability, as well as clinical relevancy using XAI methods. The gait of 27 healthy subjects and 20 subjects after total hip arthroplasty (THA) was recorded with an inertial measurement unit (IMU)-based system. Three different input representations were used for classification. Local Interpretable Model-Agnostic Explanations (LIME) was used for model interpretation. The best accuracy was achieved with automatically extracted features (mean accuracy Macc = 100%), followed by features based on simple descriptive statistics (Macc = 97.38%) and waveform data (Macc = 95.88%). Globally seen, sagittal movement of the hip, knee, and pelvis as well as transversal movement of the ankle were especially important for this specific classification task. The current work shows that the type of input representation crucially determines interpretability as well as clinical relevance. A combined approach using different forms of representations seems advantageous. The results might assist physicians and therapists finding and addressing individual pathologic gait patterns.


Subject(s)
Arthroplasty, Replacement, Hip , Artificial Intelligence , Gait , Biomechanical Phenomena , Humans , Knee Joint , Machine Learning
5.
Comput Methods Biomech Biomed Engin ; 23(1): 12-22, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31729264

ABSTRACT

Systems for instrumented motion analysis depend on an accurate biomechanical model. In this work an existing statistical shape fitting approach was adapted to register a parametrized human surface model with annotated anatomical landmarks to a point cloud obtained from one frontal depth camera view. Based on the obtained landmark positions joint centers, segment lengths and segment orientations of the lower body were calculated. The outcome was validated among two groups of healthy and impaired subjects, using a marker-based optical motion capture system. The results reveal a valid and reliable approach for obtaining an individualized lower body biomechanical model with minimum effort.


Subject(s)
Lower Extremity/physiology , Models, Biological , Photography/instrumentation , Statistics as Topic , Adult , Algorithms , Anatomic Landmarks , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Range of Motion, Articular , Reproducibility of Results , Young Adult
6.
Sensors (Basel) ; 19(22)2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31744141

ABSTRACT

Patients after total hip arthroplasty (THA) suffer from lingering musculoskeletal restrictions. Three-dimensional (3D) gait analysis in combination with machine-learning approaches is used to detect these impairments. In this work, features from the 3D gait kinematics, spatio temporal parameters (Set 1) and joint angles (Set 2), of an inertial sensor (IMU) system are proposed as an input for a support vector machine (SVM) model, to differentiate impaired and non-impaired gait. The features were divided into two subsets. The IMU-based features were validated against an optical motion capture (OMC) system by means of 20 patients after THA and a healthy control group of 24 subjects. Then the SVM model was trained on both subsets. The validation of the IMU system-based kinematic features revealed root mean squared errors in the joint kinematics from 0.24° to 1.25°. The validity of the spatio-temporal gait parameters (STP) revealed a similarly high accuracy. The SVM models based on IMU data showed an accuracy of 87.2% (Set 1) and 97.0% (Set 2). The current work presents valid IMU-based features, employed in an SVM model for the classification of the gait of patients after THA and a healthy control. The study reveals that the features of Set 2 are more significant concerning the classification problem. The present IMU system proves its potential to provide accurate features for the incorporation in a mobile gait-feedback system for patients after THA.


Subject(s)
Arthroplasty, Replacement, Hip/rehabilitation , Biomechanical Phenomena/physiology , Gait/physiology , Monitoring, Physiologic , Wearable Electronic Devices , Algorithms , Female , Humans , Machine Learning , Male , Support Vector Machine
7.
PLoS One ; 14(2): e0213064, 2019.
Article in English | MEDLINE | ID: mdl-30817787

ABSTRACT

3D joint kinematics can provide important information about the quality of movements. Optical motion capture systems (OMC) are considered the gold standard in motion analysis. However, in recent years, inertial measurement units (IMU) have become a promising alternative. The aim of this study was to validate IMU-based 3D joint kinematics of the lower extremities during different movements. Twenty-eight healthy subjects participated in this study. They performed bilateral squats (SQ), single-leg squats (SLS) and countermovement jumps (CMJ). The IMU kinematics was calculated using a recently-described sensor-fusion algorithm. A marker based OMC system served as a reference. Only the technical error based on algorithm performance was considered, incorporating OMC data for the calibration, initialization, and a biomechanical model. To evaluate the validity of IMU-based 3D joint kinematics, root mean squared error (RMSE), range of motion error (ROME), Bland-Altman (BA) analysis as well as the coefficient of multiple correlation (CMC) were calculated. The evaluation was twofold. First, the IMU data was compared to OMC data based on marker clusters; and, second based on skin markers attached to anatomical landmarks. The first evaluation revealed means for RMSE and ROME for all joints and tasks below 3°. The more dynamic task, CMJ, revealed error measures approximately 1° higher than the remaining tasks. Mean CMC values ranged from 0.77 to 1 over all joint angles and all tasks. The second evaluation showed an increase in the RMSE of 2.28°- 2.58° on average for all joints and tasks. Hip flexion revealed the highest average RMSE in all tasks (4.87°- 8.27°). The present study revealed a valid IMU-based approach for the measurement of 3D joint kinematics in functional movements of varying demands. The high validity of the results encourages further development and the extension of the present approach into clinical settings.


Subject(s)
Joints/physiology , Physical Therapy Modalities , Sports/physiology , Adult , Algorithms , Biomechanical Phenomena , Female , Fiducial Markers , Humans , Imaging, Three-Dimensional , Joints/anatomy & histology , Male , Models, Biological , Movement , Physical Therapy Modalities/statistics & numerical data , Range of Motion, Articular , Sports Medicine/statistics & numerical data , Young Adult
8.
Sensors (Basel) ; 19(1)2018 Dec 22.
Article in English | MEDLINE | ID: mdl-30583508

ABSTRACT

The aim of this study was to assess the validity and test-retest reliability of an inertial measurement unit (IMU) system for gait analysis. Twenty-four healthy subjects conducted a 6-min walking test and were instrumented with seven IMUs and retroreflective markers. A kinematic approach was used to estimate the initial and terminal contact events in real-time. Based on these events twelve spatio-temporal parameters (STP) were calculated. A marker based optical motion capture (OMC) system provided the reference. Event-detection rate was about 99%. Detection offset was below 0.017 s. Relative root mean square error (RMSE) ranged from 0.90% to 4.40% for most parameters. However, the parameters that require spatial information of both feet showed higher errors. Step length showed a relative RMSE of 6.69%. Step width and swing width revealed the highest relative RMSE (34.34% and 35.20%). Test-retest results ranged from 0.67 to 0.92, except for the step width (0.25). Summarizing, it appears that the parameters describing the lateral distance between the feet need further improvement. However, the results of the validity and reliability of the IMU system encourage its validation in clinical settings as well as further research.

9.
Sensors (Basel) ; 18(7)2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29933568

ABSTRACT

The present study investigates an algorithm for the calculation of 3D joint angles based on inertial measurement units (IMUs), omitting magnetometer data. Validity, test-retest reliability, and long-term stability are evaluated in reference to an optical motion capture (OMC) system. Twenty-eight healthy subjects performed a 6 min walk test. Three-dimensional joint kinematics of the lower extremity was recorded simultaneously by means of seven IMUs and an OptiTrack OMC system. To evaluate the performance, the root mean squared error (RMSE), mean range of motion error (ROME), coefficient of multiple correlations (CMC), Bland-Altman (BA) analysis, and intraclass correlation coefficient (ICC) were calculated. For all joints, the RMSE was lower than 2.40°, and the ROME was lower than 1.60°. The CMC revealed good to excellent waveform similarity. Reliability was moderate to excellent with ICC values of 0.52⁻0.99 for all joints. Error measures did not increase over time. When considering soft tissue artefacts, RMSE and ROME increased by an average of 2.2° ± 1.5° and 2.9° ± 1.7°. This study revealed an excellent correspondence of a magnetometer-free IMU system with an OMC system when excluding soft tissue artefacts.

SELECTION OF CITATIONS
SEARCH DETAIL
...