Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 24(7)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35885155

ABSTRACT

We characterise the geometry of the statistical Roegenian manifold that arises from the equilibrium distribution of an income of noninteracting identical economic actors. The main results for ideal income are included in three subsections: partition function in distribution, scalar curvature, and geodesics. Although this system displays no phase transition, its analysis provides an enlightening contrast with the results of Van der Waals Income in Roegenian Economics, where we shall examine the geometry of the economic Van der Waals income, which does exhibit a "monetary policy as liquidity-income" transition. Here we focus on three subsections: canonical partition function, economic limit, and information geometry of the economic Van der Waals manifold.

2.
Entropy (Basel) ; 23(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34682068

ABSTRACT

Originally, the Carnot cycle was a theoretical thermodynamic cycle that provided an upper limit on the efficiency that any classical thermodynamic engine can achieve during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference by the application of work to the system. The first aim of this paper is to introduce and study the economic Carnot cycles concerning Roegenian economics, using our thermodynamic-economic dictionary. These cycles are described in both a Q-P diagram and a E-I diagram. An economic Carnot cycle has a maximum efficiency for a reversible economic "engine". Three problems together with their solutions clarify the meaning of the economic Carnot cycle, in our context. Then we transform the ideal gas theory into the ideal income theory. The second aim is to analyze the economic Van der Waals equation, showing that the diffeomorphic-invariant information about the Van der Waals surface can be obtained by examining a cuspidal potential.

3.
Entropy (Basel) ; 21(5)2019 May 19.
Article in English | MEDLINE | ID: mdl-33267223

ABSTRACT

The subject of this paper is to analyse the Mathematical Principia of Economic 3D Black Holes in Roegenian economics. In detail, we study two main problems: (i) mathematical origin of economic 3D black holes; and (ii) entropy and internal political stability depending on national income and the total investment, for economic Reissner-Nordström (RN) 3D black hole. To solve these problems, it was necessary to jump from macroeconomic side to microeconomic side (a substantial approach as they are so different), to complete the thermodynamics-economics dictionary with new entities, and to introduce the flow between two macroeconomic systems. The main contribution is about introducing and studying the Schwarzschild-type metric on an economic 4D system, together with Rindler coordinates, Einstein 4D partial differential equations (PDEs), and economic RN 3D black holes. In addition, we introduce some economic Ricci type flows or waves, for further research.

SELECTION OF CITATIONS
SEARCH DETAIL
...