Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
2.
J Clin Invest ; 134(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557487

ABSTRACT

Endothelial function and integrity are compromised after allogeneic bone marrow transplantation (BMT), but how this affects immune responses broadly remains unknown. Using a preclinical model of CMV reactivation after BMT, we found compromised antiviral humoral responses induced by IL-6 signaling. IL-6 signaling in T cells maintained Th1 cells, resulting in sustained IFN-γ secretion, which promoted endothelial cell (EC) injury, loss of the neonatal Fc receptor (FcRn) responsible for IgG recycling, and rapid IgG loss. T cell-specific deletion of IL-6R led to persistence of recipient-derived, CMV-specific IgG and inhibited CMV reactivation. Deletion of IFN-γ in donor T cells also eliminated EC injury and FcRn loss. In a phase III clinical trial, blockade of IL-6R with tocilizumab promoted CMV-specific IgG persistence and significantly attenuated early HCMV reactivation. In sum, IL-6 invoked IFN-γ-dependent EC injury and consequent IgG loss, leading to CMV reactivation. Hence, cytokine inhibition represents a logical strategy to prevent endothelial injury, thereby preserving humoral immunity after immunotherapy.


Subject(s)
Bone Marrow Transplantation , Cytomegalovirus Infections , Immunity, Humoral , Interleukin-6 , Antiviral Agents , Bone Marrow Transplantation/adverse effects , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/metabolism , Immunoglobulin G , Interleukin-6/metabolism , Animals , Mice
3.
Cytotherapy ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38530690

ABSTRACT

BACKGROUND AIMS: Regulatory T cells (Tregs) are the main mediators of peripheral tolerance. Treg-directed therapy has shown promising results in preclinical studies of diverse immunopathologies. At present, the clinical applicability of adoptive Treg transfer is limited by difficulties in generating Tregs at sufficient cell dose and purity. METHODS: We developed a Good Manufacturing Practice (GMP) compliant method based on closed-system multiparametric Fluorescence-Activated Cell Sorting (FACS) to purify Tregs, which are then expanded in vitro and gene-marked with a clinical grade retroviral vector to enable in vivo fate tracking. Following small-scale optimization, we conducted four clinical-scale processing runs. RESULTS: We showed that Tregs could be enriched to 87- 92% purity following FACS-sorting, and expanded and transduced to yield clinically relevant cell dose of 136-732×106 gene-marked cells, sufficient for a cell dose of at least 2 × 106 cells/kg. The expanded Tregs were highly demethylated in the FOXP3 Treg-specific demethylated region (TSDR), consistent with bona fide natural Tregs. They were suppressive in vitro, but a small percentage could secrete proinflammatory cytokines, including interferon-γ and interleukin-17A. CONCLUSIONS: This study demonstrated the feasibility of isolating, expanding and gene-marking Tregs in clinical scale, thus paving the way for future phase I trials that will advance knowledge about the in vivo fate of transferred Tregs and its relationship with concomitant Treg-directed pharmacotherapy and clinical response.

6.
Intern Med J ; 53(12): 2319-2329, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38014511

ABSTRACT

This position paper provides an overview of the assessment and management of both acute and chronic graft-versus-host disease (GvHD). There is a focus on the use of ruxolitinib, a selective inhibitor of Janus kinase (JAK)1 and JAK2, for the treatment of corticosteroid-refractory and corticosteroid-dependent GvHD.


Subject(s)
Bronchiolitis Obliterans Syndrome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Consensus , Steroids/therapeutic use , Nitriles , Adrenal Cortex Hormones/therapeutic use , Graft vs Host Disease/drug therapy , Acute Disease , Chronic Disease
7.
Bone Marrow Transplant ; 58(9): 973-979, 2023 09.
Article in English | MEDLINE | ID: mdl-37537245

ABSTRACT

Acute gastrointestinal graft versus host disease (GI-GVHD) is a common complication following allogeneic haematopoietic cell transplantation (HCT), and is characterised by severe morbidity, frequent treatment-refractoriness, and high mortality. Early, accurate identification of GI-GVHD could allow for therapeutic interventions to ameliorate its severity, improve response rates and survival; however, standard endoscopic biopsy is inadequately informative in terms of diagnostic sensitivity or outcome prediction. In an era where rapid technological and laboratory advances have dramatically expanded our understanding of GI-GVHD biology and potential therapeutic targets, there is substantial scope for novel investigations that can precisely guide GI-GVHD management. In particular, the combination of tissue-based biomarker assessment (plasma cytokines, faecal microbiome) and molecular imaging by positron emission tomography (PET) offers the potential for non-invasive, real-time in vivo assessment of donor:recipient immune activity within the GI tract for GI-GVHD prediction or diagnosis. In this article, we review the evidence regarding GI-GVHD diagnosis, and examine the potential roles and translational opportunities posed by these novel diagnostic tools, with a focus on the evolving role of PET.


Subject(s)
Gastrointestinal Diseases , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Graft vs Host Disease/diagnostic imaging , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Gastrointestinal Tract/diagnostic imaging , Positron-Emission Tomography/adverse effects , Biopsy/adverse effects , Acute Disease , Gastrointestinal Diseases/diagnostic imaging , Gastrointestinal Diseases/etiology
8.
Leukemia ; 37(1): 143-153, 2023 01.
Article in English | MEDLINE | ID: mdl-36400926

ABSTRACT

Chemotherapy-resistant acute myeloid leukemia (AML), frequently driven by clonal evolution, has a dismal prognosis. A genome-wide CRISPR knockout screen investigating resistance to doxorubicin and cytarabine (Dox/AraC) in human AML cell lines identified gene knockouts involving AraC metabolism and genes that regulate cell cycle arrest (cyclin dependent kinase inhibitor 2A (CDKN2A), checkpoint kinase 2 (CHEK2) and TP53) as contributing to resistance. In human AML cohorts, reduced expression of CDKN2A conferred inferior overall survival and CDKN2A downregulation occurred at relapse in paired diagnosis-relapse samples, validating its clinical relevance. Therapeutically targeting the G1S cell cycle restriction point (with CDK4/6 inhibitor, palbociclib and KAT6A inhibitor, WM-1119, to upregulate CDKN2A) synergized with chemotherapy. Additionally, direct promotion of apoptosis with venetoclax, showed substantial synergy with chemotherapy, overcoming resistance mediated by impaired cell cycle arrest. Altogether, we identify defective cell cycle arrest as a clinically relevant contributor to chemoresistance and identify rationally designed therapeutic combinations that enhance response in AML, potentially circumventing chemoresistance.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Cell Cycle , Cytarabine/pharmacology , Cytarabine/therapeutic use , Apoptosis , Cell Cycle Checkpoints , Cell Line, Tumor
10.
JBMR Plus ; 6(2): e10557, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35229058

ABSTRACT

Voriconazole-associated periostitis (VAP) is an underrecognized and unpredictable side effect of long-term voriconazole therapy. We report two cases of VAP occurring in the post-transplant setting: a 68-year-old lung transplant recipient who required ongoing voriconazole therapy, in whom urinary alkalinization was used to promote fluoride excretion and minimize voriconazole-related skeletal toxicity, and a 68-year-old stem-cell transplant recipient with a high voriconazole dose requirement, identified on pharmacogenomic testing to be a CYP2C19 ultrarapid metabolizer, the dominant enzyme in voriconazole metabolism. This is the first reported case of pharmacogenomic profiling in VAP and may explain the variability in individual susceptibility to this uncommon adverse effect. Our findings provide new insights into both the management and underlying pathophysiology of VAP. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

13.
Blood ; 137(14): 1970-1979, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33512442

ABSTRACT

We determined the efficacy of tocilizumab (TCZ) in preventing grade 2-4 acute graft-versus-host disease (aGVHD) in patients with acute leukemia or myelodysplasia undergoing matched sibling donor (MSD) or volunteer unrelated donor (VUD) allogeneic stem cell transplantation after myeloablative or reduced-intensity conditioning across 5 Australian centers. A total of 145 patients (50 MSD, 95 VUD) were randomly assigned to placebo or TCZ on day -1. All patients received T-cell-replete peripheral blood stem cell grafts and graft-versus-host disease (GVHD) prophylaxis with cyclosporin/methotrexate. A planned substudy analyzed the VUD cohort. With a median follow-up of 746 days, the incidence of grade 2-4 aGVHD at day 100 for the entire cohort was 36% for placebo vs 27% for TCZ (hazard ratio [HR], 0.69; 95% confidence interval [CI], 0.38-1.26; P = .23) and 45% vs 32% (HR, 0.61; 95% CI, 0.31-1.22; P = .16) for the VUD subgroup. The incidence of grade 2-4 aGVHD at day 180 for the entire cohort was 40% for placebo vs 29% for TCZ (HR, 0.68; 95% CI, 0.38-1.22; P = .19) and 48% vs 32% (HR, 0.59; 95% CI, 0.30-1.16; P = .13) for the VUD subgroup. Reductions in aGVHD were predominantly in grade 2 disease. For the entire cohort, transplant-related mortality occurred in 8% vs 11% of placebo-treated vs TCZ-treated patients, respectively (P = .56), and overall survival was 79% vs 71% (P = .27). Median day to neutrophil and platelet engraftment was delayed by 2 to 3 days in TCZ-treated patients, whereas liver toxicity and infectious complications were similar between groups. In this phase 3 randomized double-blind trial, TCZ showed nonsignificant trends toward reduced incidence of grade 2-4 aGVHD in recipients from HLA-matched VUDs but no improvements in long term-survival.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Cyclosporine/therapeutic use , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation , Immunosuppressive Agents/therapeutic use , Methotrexate/therapeutic use , Adult , Double-Blind Method , Female , Humans , Leukemia/therapy , Male , Middle Aged , Myelodysplastic Syndromes/therapy , Placebo Effect , Transplantation, Homologous , Treatment Outcome
14.
Nat Immunol ; 21(10): 1205-1218, 2020 10.
Article in English | MEDLINE | ID: mdl-32839608

ABSTRACT

Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4+ and CD8+ T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria-two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8+ T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4+ T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Inflammation/immunology , Killer Cells, Natural/immunology , Leishmania donovani/physiology , Leishmaniasis, Visceral/immunology , Malaria/immunology , Membrane Proteins/metabolism , Plasmodium/physiology , Animals , Cells, Cultured , Cytotoxicity, Immunologic , Disease Models, Animal , Exocytosis , Humans , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Secretory Vesicles/metabolism
15.
J Immunother Cancer ; 8(1)2020 06.
Article in English | MEDLINE | ID: mdl-32527930

ABSTRACT

BACKGROUND: Analysis of vector integration sites in gene-modified cells can provide critical information on clonality and potential biological impact on nearby genes. Current short-read next-generation sequencing methods require specialized instruments and large batch runs. METHODS: We used nanopore sequencing to analyze the vector integration sites of T cells transduced by the gammaretroviral vector, SFG.iCasp9.2A.ΔCD19. DNA from oligoclonal cell lines and polyclonal clinical samples were restriction enzyme digested with two 6-cutters, NcoI and BspHI; and the flanking genomic DNA amplified by inverse PCR or cassette ligation PCR. Following nested PCR and barcoding, the amplicons were sequenced on the Oxford Nanopore platform. Reads were filtered for quality, trimmed, and aligned. Custom tool was developed to cluster reads and merge overlapping clusters. RESULTS: Both inverse PCR and cassette ligation PCR could successfully amplify flanking genomic DNA, with cassette ligation PCR showing less bias. The 4.8 million raw reads were grouped into 12,186 clusters and 6410 clones. The 3'long terminal repeat (LTR)-genome junction could be resolved within a 5-nucleotide span for a majority of clusters and within one nucleotide span for clusters with ≥5 reads. The chromosomal distributions of the insertional sites and their predilection for regions proximate to transcription start sites were consistent with previous reports for gammaretroviral vector integrants as analyzed by short-read next-generation sequencing. CONCLUSION: Our study shows that it is feasible to use nanopore sequencing to map polyclonal vector integration sites. The assay is scalable and requires minimum capital, which together enable cost-effective and timely analysis. Further refinement is required to reduce amplification bias and improve single nucleotide resolution.


Subject(s)
Cell Engineering/methods , Cell- and Tissue-Based Therapy/methods , High-Throughput Nucleotide Sequencing/methods , Nanopore Sequencing/methods , Humans
16.
Cancer Immunol Res ; 8(8): 1085-1098, 2020 08.
Article in English | MEDLINE | ID: mdl-32444423

ABSTRACT

The adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) is known to facilitate caspase-1 activation, which is essential for innate host immunity via the formation of the inflammasome complex, a multiprotein structure responsible for processing IL1ß and IL18 into their active moieties. Here, we demonstrated that ASC-deficient CD8+ T cells failed to induce severe graft-versus-host disease (GVHD) and had impaired capacity for graft rejection and graft-versus-leukemia (GVL) activity. These effects were inflammasome independent because GVHD lethality was not altered in recipients of caspase-1/11-deficient T cells. We also demonstrated that ASC deficiency resulted in a decrease in cytolytic function, with a reduction in granzyme B secretion and CD107a expression by CD8+ T cells. Altogether, our findings highlight that ASC represents an attractive therapeutic target for improving outcomes of clinical transplantation.


Subject(s)
Bone Marrow Transplantation/adverse effects , CARD Signaling Adaptor Proteins/metabolism , CD8-Positive T-Lymphocytes/immunology , Graft vs Host Disease/immunology , Inflammasomes/immunology , Leukemia/therapy , T-Lymphocytes, Cytotoxic/immunology , Animals , Apoptosis , Caspase 1/metabolism , Disease Models, Animal , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , Inflammasomes/metabolism , Leukemia/immunology , Leukemia/pathology , Mice , Mice, Inbred BALB C
17.
Int J Hematol ; 111(4): 574-578, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31912373

ABSTRACT

We have previously reported that haematopoietic progenitor cell transplantation recipients with biopsy-negative acute Gastrointestinal Graft versus Host Disease (Discordant GVHD) demonstrate superior survival compared to "True Positive" cases. We aimed to elucidate this discrepancy by examining clinical and laboratory predictors of survival among patients treated for True Positive or Discordant GVHD. Data were obtained by retrospective chart review. At diagnosis, the incidence of severe symptoms, hypoalbuminaemia, hyperbilirubinaemia, and poor performance status were recorded. Following treatment, the incidence of non-response to first-line corticosteroids was assessed. Differences between cohorts were compared using Fisher's exact test. 74 patients were identified, comprising 55 (74%) True Positive and 19 (26%) Discordant GVHD cases. True Positive cases were significantly more likely to have baseline severe symptoms (84% vs. 36%; p = 0.0002) and hypoalbuminaemia (94% vs. 75%; p = 0.023). There was no significant difference between cohorts in terms of hyperbilirubinaemia or performance status. Non-response to corticosteroid therapy was observed significantly more frequently in the True Positive cohort (55% vs. 11%; p = 0.001). In summary, the superior survival observed in Discordant GVHD is explained by a less severe GI-GVHD phenotype at diagnosis and a greater likelihood of response to corticosteroids. Further research is warranted to explain biological mechanisms for these findings.


Subject(s)
Gastrointestinal Tract , Graft vs Host Disease/diagnosis , Graft vs Host Disease/mortality , Acute Disease , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Female , Graft vs Host Disease/drug therapy , Graft vs Host Disease/pathology , Hematopoietic Stem Cell Transplantation , Humans , Male , Middle Aged , Severity of Illness Index , Survival Rate , Young Adult
18.
Blood Adv ; 3(20): 3013-3019, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31648324

ABSTRACT

Allogeneic stem cell transplantation (SCT) is a curative therapy for patients with hematological malignancies related largely to an immunological graft-versus-leukemia (GVL) effect mediated by donor T cells and natural killer cells. Relapse of disease after SCT represents failure of GVL and is now the major cause of treatment failure. We sought to augment GVL effects in patients (n = 29) relapsing after SCT in a prospective phase I/II clinical trial of dose-escalated pegylated interferon-2α (peg-IFNα). The administration of peg-IFNα after reinduction chemotherapy, with or without subsequent donor lymphocyte infusion (DLI), resulted in a 2-year overall survival (OS) of 31% (95% confidence interval, 17.3%-49.2%), which rejects the null hypothesis of 7% generated by observations in an institutional historical cohort. As expected, peg-IFNα was associated with graft-versus-host disease (GVHD) and hematological toxicity, which was manageable with scheduled dose modifications. Progression-free survival (PFS) was greatest in patients who experienced GVHD, although the majority of those patients still eventually progressed. Higher PFS and OS were associated with pretreatment proportions of immune cell populations with regulatory function, including mucosal invariant T cells, regulatory T cells, and plasmacytoid dendritic cells, independent of any association with GVHD. Peg-IFNα administration after relapse thus constitutes a logical strategy to invoke GVL effects and should be studied in a larger, multicenter cohort. This trial was registered at www.anzctr.org.au as #ACTRN12612000728831.


Subject(s)
Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Interferon-alpha/adverse effects , Polyethylene Glycols/adverse effects , Adult , Aged , Biomarkers , Female , Graft vs Host Disease/diagnosis , Graft vs Host Disease/mortality , Hematologic Diseases/complications , Hematologic Diseases/drug therapy , Humans , Interferon-alpha/therapeutic use , Male , Middle Aged , Polyethylene Glycols/therapeutic use , Proportional Hazards Models , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , Transplantation Conditioning , Transplantation, Homologous , Young Adult
19.
Front Immunol ; 10: 1854, 2019.
Article in English | MEDLINE | ID: mdl-31447852

ABSTRACT

Delayed immune reconstitution and the consequently high rates of leukemia relapse and infectious complications are the main limitations of haploidentical hematopoietic stem cell transplantation. Donor T cell addback can accelerate immune reconstitution but the therapeutic window between graft-vs.-host disease and protective immunity is very narrow in the haploidentical transplant setting. Hence, strategies to improve the safety and efficacy of adoptive T cell transfer are particularly relevant in this setting. Adoptive T cell transfer strategies in haploidentical transplantation include the use of antigen-specific T cells, allodepletion and alloanergy induction, immune modulation by the co-infusion of regulatory cell populations, and the use of safety switch gene-modified T cells. Whilst common principles apply, there are features that are unique to haploidentical transplantation, where HLA-mismatching directly impacts on immune reconstitution, and shared vs. non-shared HLA-allele can be an important consideration in antigen-specific T cell therapy. This review will also present an update on safety switch gene-modified T cells, which can be conditionally deleted in the event of severe graft- vs.-host disease or other adverse events. Herpes Virus Simplex Thymidine Kinase (HSVtk) and inducible caspase-9 (iCasp9) are safety switches that have undergone multicenter studies in haploidentical transplantation with encouraging results. These gene-modified cells, which are trackable long-term, have also provided important insights on the fate of adoptively transferred T cells. In this review, we will discuss the biology of post-transplant T cell immune reconstitution and the impact of HLA-mismatching, and the different cellular therapy strategies that can help accelerate T cell immune reconstitution after haploidentical transplantation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Leukemia/therapy , T-Lymphocytes/immunology , Graft vs Host Disease/etiology , Graft vs Host Disease/immunology , Herpesvirus 4, Human/immunology , Histocompatibility Testing , Humans , Immune Reconstitution , Minor Histocompatibility Antigens/immunology , T-Lymphocytes, Regulatory/immunology
20.
Cytotherapy ; 21(5S): S1-S2, 2019 05.
Article in English | MEDLINE | ID: mdl-31130175
SELECTION OF CITATIONS
SEARCH DETAIL
...